Upper UT to Cane Creek (Pickard) Restoration Site Alamance County, North Carolina

EEP Project #395

MY-04 Monitoring Report

Data Collected: September, 2012 Submitted: January, 2013

Prepared for:

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program 217 West Jones St, Suite 3000A Raleigh, NC 27603

Upper UT to Cane Creek (Pickard) Restoration Site EEP Project #395 Alamance County North Carolina

MY-04 Monitoring Report Prepared By:

Ward Consulting Engineers, P.C. Firm License Number C-2619 Project Manager: Becky Ward, P.E. 8368 Six Forks Road, Suite 104 Raleigh, NC 27615-5083 Ph: 919-870-0526 Fax: 919-870-5359

TABLE OF CONTENTS

I.	Executive Summary	
II.	Methodology	3
III.	References	
	APPENDICES	
Appe	endix A. Project Vicinity Map and Background Tables	4
	Figure 1a. Vicinity Map	5
	Table 1a. Project Components	6
	Table 1b. Component Summations	6
	Table 2. Project Activity and Reporting History	7
	Table 3. Project Contacts Table	8
	Table 4. Project Attribute Table	9
Appe	endix B. Visual Assessment Data	10
	Figure 2. Current Conditions Plan View	11
	Table 5. Visual Stream Morphology Assessment Table	16
	Table 6. Vegetation Condition Assessment Table	23
	Photos 1-6. Stream Station Photos	25
	Photos 7-13. Vegetation Monitoring Plots Photos	31
Appe	endix C. Vegetation Plot Data	
	Table 7. Vegetation Plot Criteria Attainment	
	Table 8. CVS Vegetation Plot Metadata	
	Table 9. CVS Planted and Total Stem Counts	38
		40
Appe	endix D. Stream Survey Data	
	Figure 3-8. Cross-Sections	
	Figure 9. Longitudinal Profile	
	Figure 10-15. Pebble Count Plots	
	Table 10a. Baseline Stream Data Summary	
	Table 10b. Baseline Stream Data Summary	
	Table 11a. Dimensional Morphology Summary	
	Table 11b. Stream Reach Data Summary	70
Appe	endix E. Hydrologic Data	
	Table 12 Verification of Bankfull Events	

I. Executive Summary

The Upper UT to Cane Creek (Pickard) Restoration Site (Site) is located in southwest Alamance County approximately 5 miles east of Liberty, North Carolina in United States Geological Survey Hydrologic Unit 03030002050050 (North Carolina Division of Water Quality Subbasin 03-06-04) of the Cape Fear River Basin. This Hydrologic Unit has been identified as a Targeted Local Watershed in NCEEP's *Cape Fear River Basin Restoration Priorities 2009*. The Site was identified to assist the North Carolina Ecosystem Enhancement Program in meeting stream and wetland restoration goals. Primary activities at the Site included stream restoration and wetland enhancement/preservation by excluding livestock from the Site, stabilizing stream banks, installing in-stream structures, adjusting stream plan form, removing invasive species, and replanting riparian areas with native vegetation. Project restoration efforts provided 6783 Stream Mitigation Units and 1.1 riparian riverine Wetland Mitigation Units. The goals and objectives of this project focused on improving local water quality, enhancing flood attenuation, and restoring aquatic and riparian habitat. These goals were accomplished by the following:

- 1. Reestablished stream stability and the capacity to transport watershed flows and sediment load by restoring stable channel morphology supported by natural instream habitat and grade/bank stabilization structures
- 2. Reduced nonpoint source sedimentation and nutrient inputs into the Site by eliminating the acceleration of bank erosion as a result of land use activities, excluding livestock, and reestablishing a native riparian buffer greater than 50 feet in width.
- 3. Enhanced the capacity of the Site to mitigate flood flows by reconnecting the stream to the historic floodplain.

Beaver activity was noted during the initial site survey and stream survey in March 2012, with 8 beaver dams noted throughout the project in the letter dated March 28, 2012. These beaver dams have been removed by NC EEP contract personnel and are currently no longer present on the stream.

Monitoring data, prior to MY-03 (January 2011 and earlier) was adjusted to meet the requirements of the current monitoring template (Version 1.3 1/15/10). The previous monitoring data was adjusted in which the datum was corrected to NAVD 88 to correlate with the vertical datum utilized in the years 3 and 4 data collection. The stream thalweg stationing was also corrected so that all the reach longitudinal profiles display from upstream to downstream and read from left to right.

A cumulative total of 2,963 linear feet out of 6,783 linear feet (44%) of the restored stream was monitored/surveyed via 5 separate monitoring reaches. Overall, the entire site is stable with little change to pattern, profile and geometry. A comparison of longitudinal profiles for all reaches shows little change from the previous MY-03 year monitoring data. Several beaver dams were present during the stream data survey (March 2012) but were removed prior to the subsequent site visit in August 2012. These beaver dams created backwater effects and contributed to the loss of vegetation along the adjacent stream banks. The backwater effects made it difficult to determine the beginning and end of stream features (riffles and pools) due to the lack of flow in the water. The stream banks all remain stable and well vegetated with only one location of

approximately 10 feet of stream bank showing signs of instability (see CCPV). The bank instability in this location is due to livestock access along the stream crossing. The previously noted debris obstructions are still present in several locations throughout the stream. A comparison of stream cross sections to previous monitoring years shows little change to the geometry, further suggesting site stability. Pebble counts were preformed in previous monitoring years through a distribution of counts throughout all the features within each reach. The reach pebble counts show slight coarsening in reaches 1 and 3, with significant coarsening in reach 2. The pebble counts for reach 4 shows slight fining, due mostly to the backwater effects of the beaver dams. The reach 5 pebble count remains consistent with the previous year data. The visual assessment concluded that the site exhibits a 100% structure integrity and function.

Fifteen vegetation plots were monitored using Version 4.2 of the CVS-EEP vegetation monitoring protocol. Level II of this protocol was implemented for MY-04 to include both planted and natural woody stems. The success criterion for total woody stems is 320 stems/acre after MY-03. A mortality rate of ten percent will be allowed after MY-04 (288 stems/acre), with another ten percent allowed after MY-05 (260 stems/acre). Based on the CVS vegetation monitoring data for MY-03 there are 12,081 total woody stems/acre including live stakes, planted stems, and natural stems. Counting only planted stems and excluding livestakes, there are 472 stems/acre. While all the vegetation plots combined meet the criteria for total stems, planted stem counts for plots 4, 10, and 12 had planted stem counts below the 320 stems/acre (Table 9). Data collected for the vegetation monitoring plots are in Appendix C.

Vegetation problem areas consist of areas with low stem densities, bare areas with limited herbaceous and woody stem coverage, and invasive exotic plants. Most of the areas with low stem densities are located beyond the 50ft stream buffer in the upland areas mainly consisting of old pastures where tall fescue (Schedonurus arundinaceus) dominates the herb layer. Bare areas have little to no herbaceous cover with stunted woody stems if present likely due to a combination of infertile soils and disturbed soils from construction. Invasive exotics of concern and recorded as vegetation problem areas within the conservation easement include multiflora rose (Rosa multiflora) and Chinese privet (Ligustrum sinense). Multiflora rose was observed sparsely patchy throughout the conservation easement. Chinese privet was also sparsely patchy throughout the conservation easement concentrated mostly along the forest edge within Reach 5. Other invasive exotics observed include Japanese honeysuckle (Lonicera japonica), Japanese stiltgrass (*Microstegium vimineum*), and tall fescue. Japanese honeysuckle was patchy in areas along the forest edge throughout the conservation easement. Japanese stiltgrass was also patchy throughout the conservation easement. Tall fescue was located in the uplands where pastures were previous to construction. Although these species have different ranks of severity, the functionality of the project is not expected to be impaired significantly. It is likely that all of these species were present in and adjacent to the conservation easement prior to construction.

Summary information/data related to the occurrence of items such as beaver encroachment and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly Restoration Plan) documents available on

EEP's website. All raw data supporting the tables and figures in the appendices are available from EEP upon request.

II. Methodology

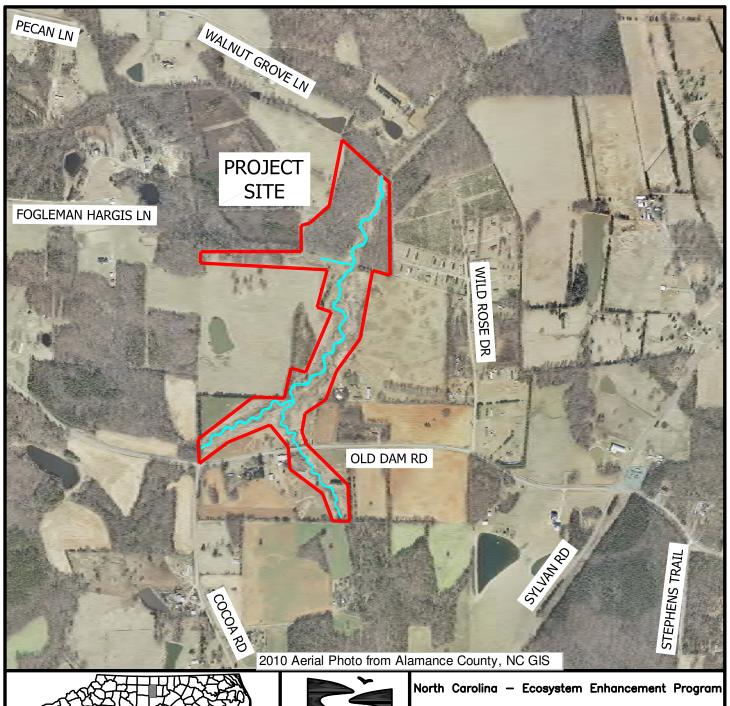
Methodologies follow EEP monitoring report template Version 1.3.1 (01/15/10) and CVS –EEP Protocol for Recording Vegetation (Lee et al 2008). Photos were taken with a digital camera. A Trimble Geo XT handheld unit with sub-meter accuracy was used to collect vegetation area locations.

A. Vegetation Methodologies

Fifteen vegetation monitoring plots were monitored on September 5, 2012 according to Level II of the EEP/CVS Protocol for Recording Vegetation Version 4.2, which includes both natural and woody stems. The vegetation plots are 10 meters square and marked with metal fence posts at each corner, and an additional 1" diameter PVC pipe marking each plot origin. Data collected for these plots are in Appendix C. *Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas* (Weakley 2011) was used as the taxonomic standard for vegetation. See figures in Appendix A for monitoring plot locations.

B. Stream Methodologies

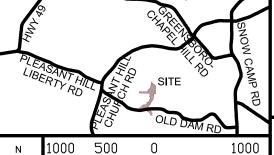
Stream profile and cross-sections were surveyed on March 13, 2012 using total station equipment and methods. The survey data was plotted using AutoCAD Civil3D. The longitudinal profile was generated using individual reach alignments. Cross sectional data was extracted based on a linear alignment between the end pins. Cross section bankfull elevations for yearly comparisons are based on the baseline bankfull elevation established for each cross section.


III. References

Lee, Michael T. Peet, Robert K. Roberts, Steven D., Wentworth, Thomas R. (2008). CVS-EEP Protocol for Recording Vegetation Version 4.2.

Weakley, Alan (2007). Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas. http://www.herbarium.unc.edu/flora.htm.

Wolman, M.G., 1954. A Method of Sampling Coarse River-Bed Material, Transactions of American Geophysical Union 35:951-956.


Appendix A. Project Vicinity Map and Background Tables

Upper UT to Cane Creek (Pickard) Alamance County, North Carolina EEP ID #395

APPROXIMATE SCALE

FIGURE 1 UPPER UT TO CANE CREEK (PICKARD) AERIAL VICINITY MAP

WARD CONSULTING ENGINEERS, PC 8368 Six Forks Rd, Suite 104

3368 Six Forks Rd, Suite 104 Raleigh, NC 27615 PH: (919) 870-0526 FAX (919) 870-5359

	Table 1. Project Components Upper UT to Cane Creek (Pickard) / EEP# 395											
Project Compon ent or Reach ID	Existing Feet/Acre s	Restorati on Level	Approa ch	Footage or Acreage	Stationing	Mitigat ion Ratio	Mitigation Units	BMP Eleme nts ¹	Comment			
Reach A	1430	R	P1	1810.76 lf	10+00- 28+10.76	1:1	1738.76		Excludes 72-foot ROW at Old Dam Rd			
Reach B	2065	R	P1	2118.69 lf	28+10.76- 49+29.45	1:1	2118.69					
Reach C	1435	R	P2	1194.58 lf	49+29.45- 61+24.03	1:1	1194.58					
Reach D	1100	R	P1	1357.31 lf	100+00- 113.57.31	1:1	1357.31					
Reach E	300	R	P1	373.25 lf	200+00- 203+73.25	1:1	373.25					
Wetlands	1.3	E		1.3 Ac		2:1	0.65					
Wetlands	2	Р		2 Ac		5:1	0.4					

1 = BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Detention Pond; FS = Filter Strip; Grassed Swale = S; LS = Level Spreader; NI = Natural Infiltration Area, O = Other; CF = Cattle Fencing; WS = Watering System; CH = Livestock Housing

L	Table 1b. Component Summations Upper UT to Cane Creek (Pickard) / EEP# 395									
Restoration Level	Stream (If)	Riparian Wetland (Ac)		Non- Ripar (Ac)	Upland (Ac)	Buffer (Ac)	ВМР			
		Riverine	Non- Riverine							
Restoration	6782.59									
Enhancement		1.3								
Enhancement I										
Enhancement II										
Creation										
Preservation		2								
HQ Preservation										
Totals (Feet/Acres)	6782.59	3.	.3	0	0	41				
MU Totals	6783	1.	.1	0	0	0				
	Non-Applic	able								

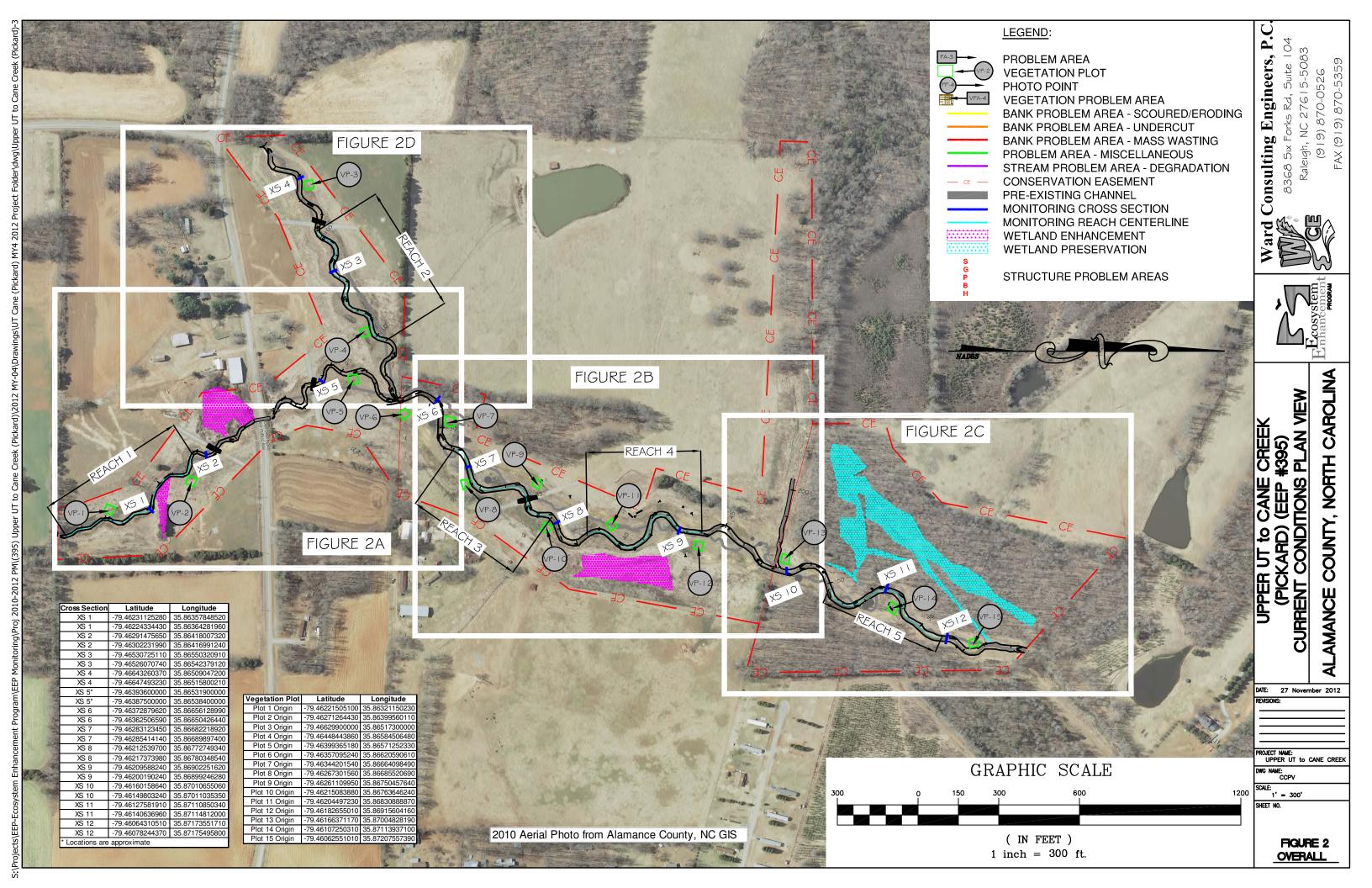
Table 2. Project Activity and Reporting History Upper UT to Cane Creek (Pickard) / EEP# 395

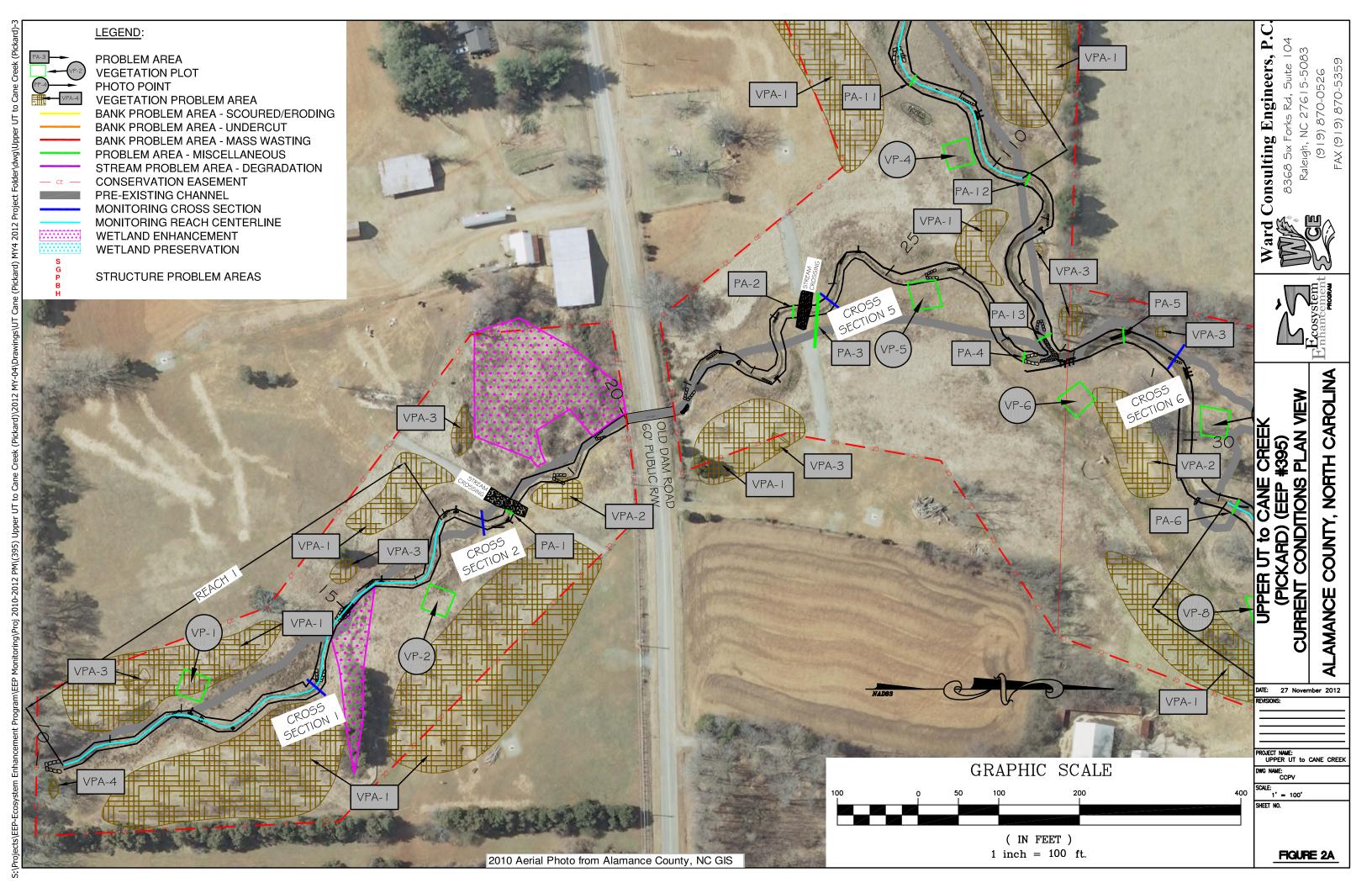
Elapsed Time Since Grading Complete: 3 yrs 8 months
Elapsed Time Since Planting Complete: 3 yrs 8 Months

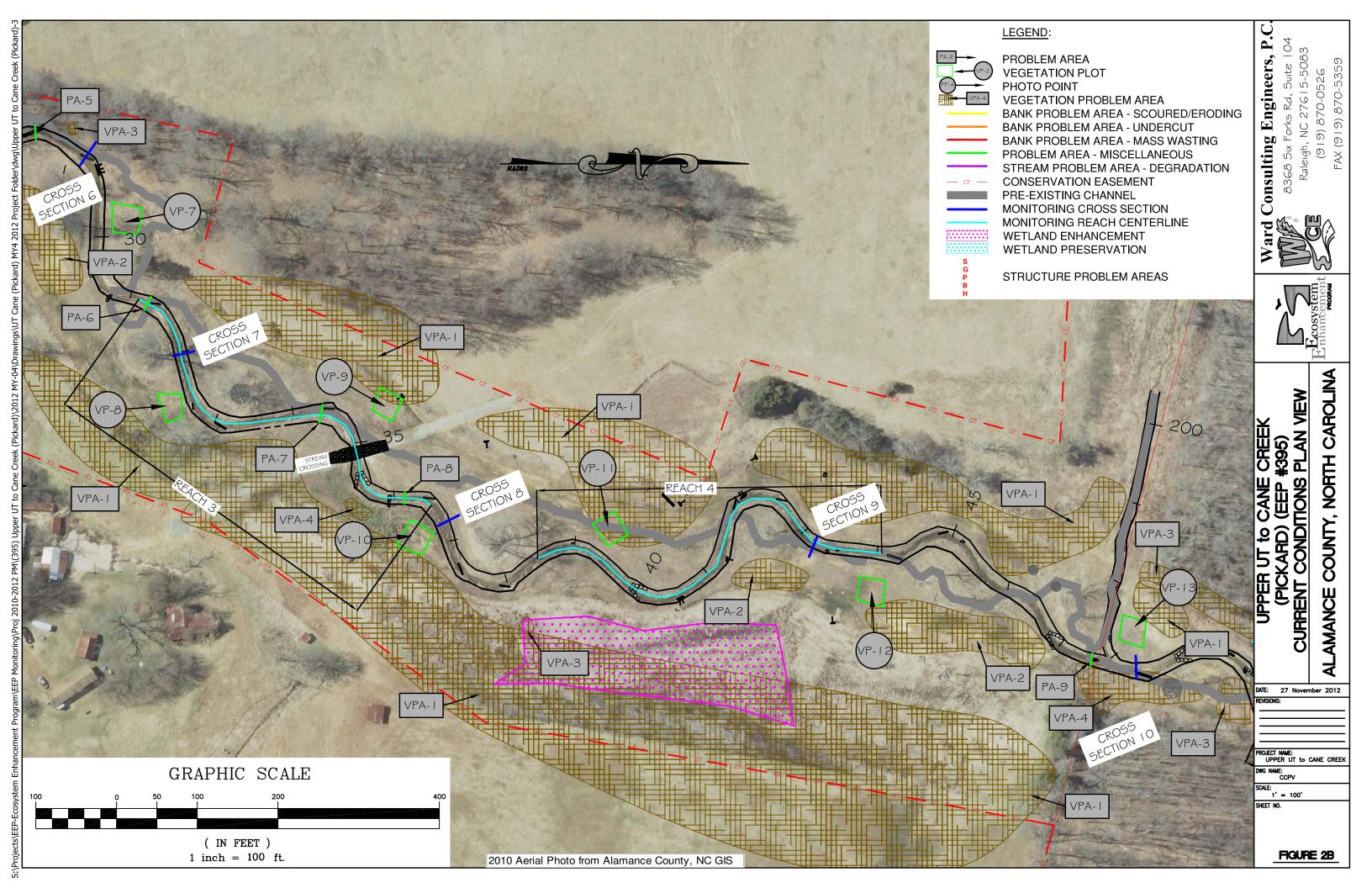
Number of Reporting Years¹: 4

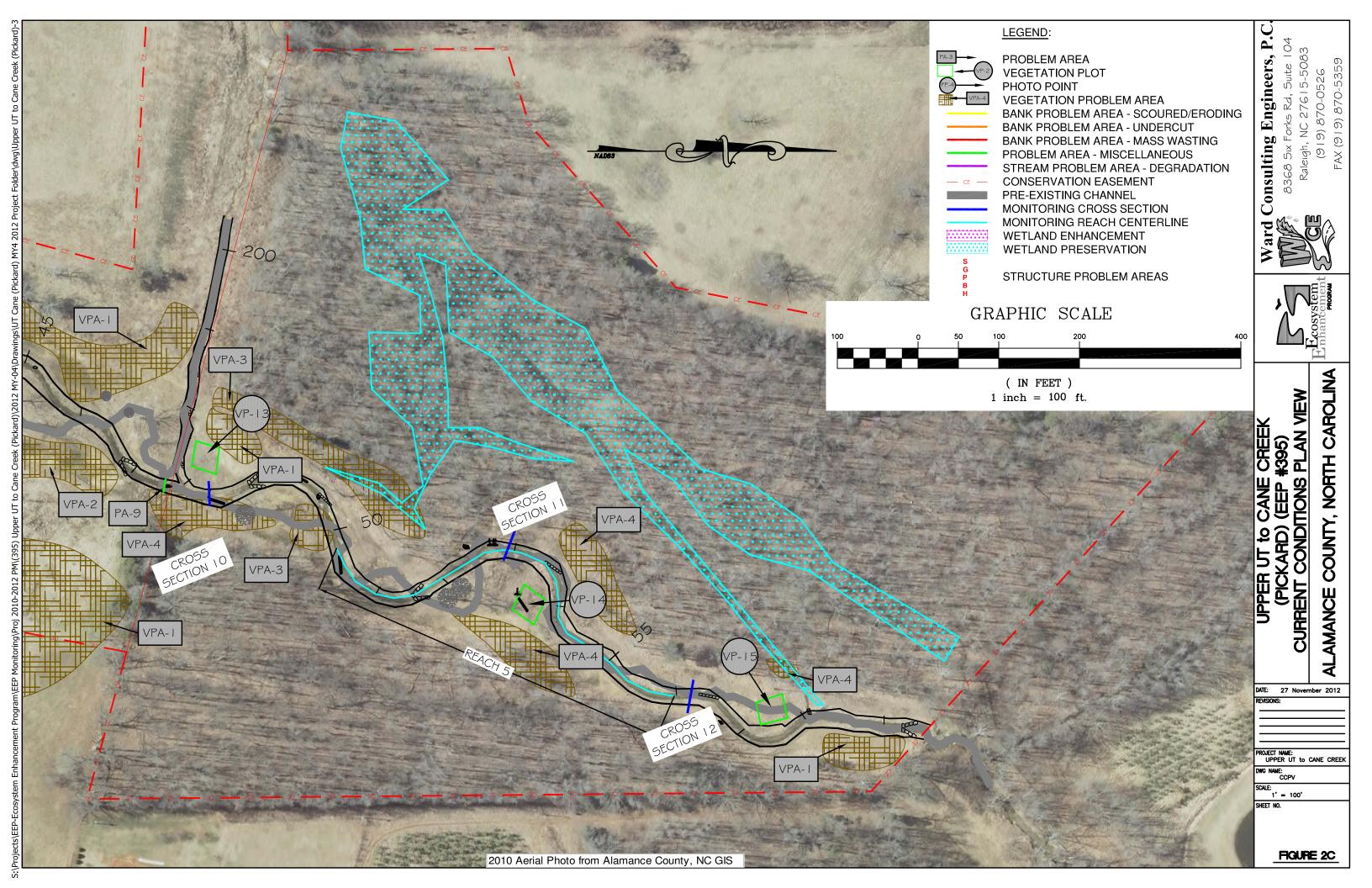
	Data Collection	Completion or
Activity or Deliverable	Complete	Delivery
Restoration Plan		Feb-06
Construction		Mar-09
Site Planting		Mar-09
As-built Drawings		Mar-09
Mitigation Plan (Year 0 Monitoring – baseline)	July-Oct 2008	July-09
Year 1 Monitoring	Oct-09	Nov-09
Year 2 Monitoring	Sep-10	Jan-11
Year 3 Monitoring	Aug-11	Dec-11
Year 4 Monitoring	Sep-12	Nov-12
Year 5 Monitoring		

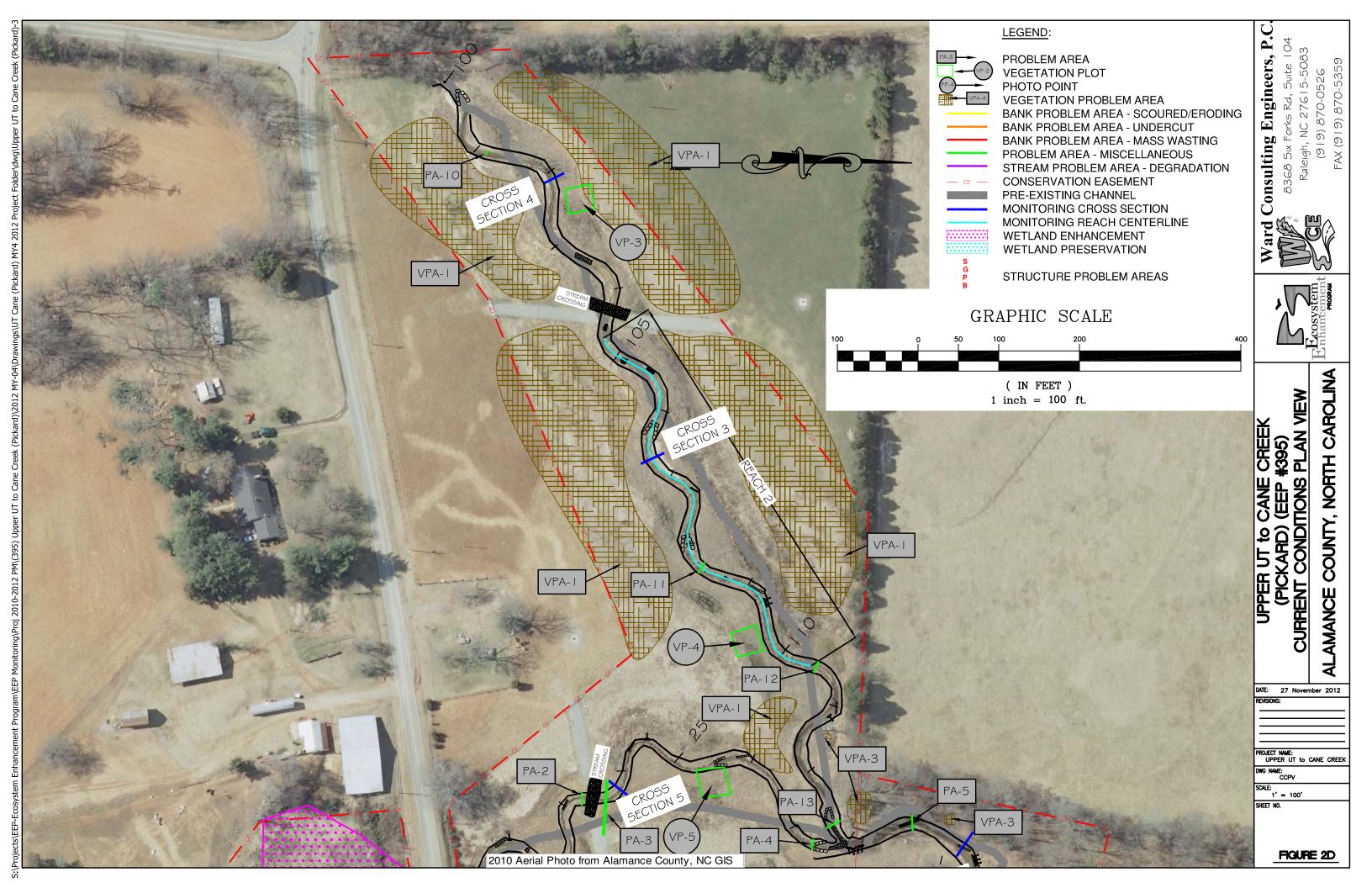
Bolded items are examples of those items that are not standard, but may come up and should be included. Non-bolded items represent events that are standard components over the course of a typical project. The above are obviously not the extent of potential relevant project activities, but are just provided as example as part of this exhibit. If planting and morphology are on split monitoring schedules that should be made clear in the table.


^{1 =} Equals the number of reports or data points produced excluding the baseline


	Table 3. Project Contacts Table						
	JT to Cane Creek (Pickard) / EEP# 395						
Designer	URS Corporation						
	1600 Perimeter Park Drive, Suite 400						
	Morrisville, North Carolina 27560						
Primary project design POC	Kathleen McKeithan (919) 461-1597						
Construction Contractor	River Works, Inc.						
	8000 Regency Parkway, Suite 200						
	Cary, North Carolina 27511						
Construction contractor POC	Will Pederson (919) 459-9001						
Survey Contractor	Level Cross Surveying, PLLC						
	668 Marsh County Lane						
	Randleman, North Carolina 23717						
Survey contractor POC	Sherri Willard (336) 495-1713						
Planting Contractor	Habitat Assessment & Restoration Program, Inc.						
	9305-D Monroe Road						
	Charlotte, North Carolina 28270						
Planting contractor POC	Karri Blackmon (704) 841-2841						
Seeding Contractor	River Works, Inc.						
	8000 Regency Parkway, Suite 200						
	Cary, North Carolina 27511						
Contractor point of contact	Will Pederson (919) 459-9001						
Seed Mix Sources	Green Resource Colfax, NC						
	Rodney Montgomery (336-855-6363						
Nursery Stock Suppliers	Strader Fencing, Inc. Julian, NC						
	Kenneth Strader (336)-697-5715						
Monitoring Performers	Ward Consulting Engineers, P.C.						
	8368 Six Forks Road Suite 104						
	Raleigh, NC 27615-5083						
Stream Monitoring POC	Becky Ward 919-870-0526						
Vegetation Monitoring POC	Chris Sheats - The Catena Group - 919-732-1300						
Wetland Monitoring POC	Chris Sheats - The Catena Group - 919-732-1300						


		Attribute Tab						
Upper UT to	Cane Creek							
Project County		Alamance	County, North C	Carolina				
Physiographic Region Ecoregion		Ca	Piedmont rolina Slate Belt					
Proiect River Basin		<u> </u>	Cape Fear					
USGS HUC for Project (14 digit)		3	030002050050					
NCDWQ Sub-basin for Project			3/6/2004					
Within extent of EEP Watershed Plan?	C	ape Fear River E	Basin Restoration	Priorities 2009				
WRC Hab Class (Warm, Cool, Cold)		•	Warm					
% of project easement fenced or demarcated			100%					
Beaver activity observed during design phase?			No					
Restor	•	nt Attribute Tal						
	Reach A	Reach B	Reach C	Reach D	Reach E			
Drainage area	390	1333	1640	892	282			
Stream order	first	third	third	third	second			
Restored length (feet)	1738.76	2118.69	1194.58	1357.31	373.25			
Perennial or Intermittent Watershed type (Rural, Urban, Developing	perennial	perennial	perennial	perennial	perennial			
etc.)			Rural					
Watershed LULC Distribution (e.g.)								
Managed Herbaceous Coverage			49.8					
Mixed Upland Hardwoods								
Cultivated			9.9					
Southern Yellow Pine Deciduous Shrubland			4.6 2					
Mixed Hardwoods/Conifers			0.9					
Unmanaged Herbaceous Upland			0.6					
Evergreen Shrubland			0.4					
Water Bodies			0.4					
Etc.								
Watershed impervious cover (%)			<0.1					
NCDWQ AU/Index number			16-28					
NCDWQ classification			C, NSW					
303d listed?			No					
Upstream of a 303d listed segment?			No					
Reasons for 303d listing or stressor			N/A					
Total acreage of easement		T	50.75	1	1			
Total planted agreeds as part of the restarction	-	-	- 41	-	-			
Total planted acreage as part of the restoration	Degraded	Degraded	41 Degraded	Degraded	Degraded			
Rosgen classification of pre-existing	E4	E4	E4	E4	E4			
Rosgen classification of As-built	E4	E4	E4	E4	E4			
Valley type	VIII	VIII	VIII	VIII	VIII			
Valley slope	0.0083	0.0041	0.0045	0.0046	0.0156			
Valley side slope range (e.g. 2-3.%)	-	-	-	-	-			
Valley toe slope range (e.g. 2-3.%)	-	-	-	-	-			
Cowardin classification	R3UB1	R3UB1	R3UB1	R3UB1	R3UB1			
Trout waters designation	No	No	No	No	No			
Species of concern, endangered etc.? (Y/N)	No	No	No	No	No			
Dominant soil series and characteristics		L	<u> </u>	L				
Series	Tirzah silt loan		t Ioam, Starr Ioar and mixed alluvi		m, Herndon			
Depth	-	-	-	-	-			
Clay%	-	-	-	-	-			
K	-	-	-	-	-			
Т	-	-	-	-	-			


Use N/A for items that may not apply. Use "-" for items that are unavailable and "U" for items that are unknown


Appendix B. Visual Assessment Data

<u>Visual Stream Morphology Stability Assessment</u> Reach 1 (Sta 10+33 - 16+93) Stream Design Reach A 641

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)					100%			
		2. <u>Degradation</u> - Evidence of downcutting					100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	9	11			82%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	9	11			82%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	9	11			82%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	10	11			91%			
		Thalweg centering at downstream of meander (Glide)	10	11			91%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion					100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.					100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse					100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	6	6			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	6			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

<u>Visual Stream Morphology Stability Assessment</u>

Reach 2 (Sta 104+65 - 110+40) Stream Design Reach D

587

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)					100%			
		2. <u>Degradation</u> - Evidence of downcutting					100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	7	7			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	7	7						
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	7	7			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	7	7			100%			
		Thalweg centering at downstream of meander (Glide)	7	7			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion					100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.					100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse					100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	4	4			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	6	6			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	6	6			100%			

<u>Visual Stream Morphology Stability Assessment</u> Reach 3 (Sta 31+11 - 36+48) Stream Design Reach B 531

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)					100%			
		2. <u>Degradation</u> - Evidence of downcutting					100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	4	5			80%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	4	4			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	4	4			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	5	5			100%			
		Thalweg centering at downstream of meander (Glide)	5	5			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			1	10	99%	1	10	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.					100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse					100%			100%
				Totals	1	10	99%	1	10	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	5			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	5	5			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	5	5			100%			

<u>Visual Stream Morphology Stability Assessment</u> Reach 4 (Sta 38+49 - 44+06) Stream Design Reach B 570

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)					100%			
		2. <u>Degradation</u> - Evidence of downcutting					100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	5	5			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	4	4			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	4	4			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	5	5			100%			
		Thalweg centering at downstream of meander (Glide)	5	5			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion					100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.					100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse					100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	3			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	3	3			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	6	6			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	6	6			100%			

<u>Visual Stream Morphology Stability Assessment</u> Reach 5 (Sta 50+23 - 55+97) Stream Design Reach C 634

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)					100%			
		2. <u>Degradation</u> - Evidence of downcutting					100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	5	5			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	4	5			80%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	5	5			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	5	5			100%			
		Thalweg centering at downstream of meander (Glide)	5	5			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion					100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.					100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse					100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	3			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	3	3			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	4	4			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	4	4			100%			

Criteria, Definitions and Thresholds for Visual Stream Morphology Assessments

Major Channel Sub- Category I. Bad Condition Category Category Category Category I. Bad Condition Category C	
and fill out of filling on college of problem and or blanks between the college of the college o	
decreate largeths. "Indicatons include period all fluxiburates, channel for largeth or player in california or colors and largeth or player in a several bedates in in post or largeth or player in a several bedates in the post or largeth or player in a several bedates in the post or largeth or player in a several bedates in the post or largeth or player in a several bedates in the post or largeth or player in a several bedates in the post of post or largeth or player in a several bedates in the post of post or largeth or player in a several bedates in the post of post or largeth or player in a several bedates in the post of post or largeth or player in a several bedates in the post of post or largeth or player in a several bedates in the post of post or largeth or player in a several bedates in the post of post or largeth or player in a several bedates in the post of	
astamment for the riffle. Repeat publishe counts should suppore an assessment of riffle fining where overlap occurs (see which graphs 2 blow described my embedding or year electricity graphs 2 blow described my embedding or year electricity graphs 2 blow described my embedding or year electricity graphs 2 blow described my embedding or year electricity graphs 2 blow described my embedding or year electricity graphs 2 blow described my embedding or year electricity graphs 2 blow described by the size of the same has harded legislary finish produce resoluted by a size of the same has harded legislary finish produce resoluted by the size of the same has harded legislary placed by the size of the same has harded legislary placed by the size of the same has harded legislary placed by the size of the same has harded legislary placed by the size of the same has harded legislary placed by the size of the same has harded legislary placed by the size of the same has harded legislary placed by the size of the same has harded legislary placed by the size of the same has harded legislary placed by the size of the same has harded legislary placed by the size of the same has harded legislary placed by the size of the same has harded legislary placed by the size of the same has harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the same harded legislary placed by the size of the	distinguish from Mass Wasting
condition reaches the pools will be evaluated and talled here and under the Habitat Size Catagory below. The max pool bankful depth should be 1.8 lims the mean bankfull depth. High. Part Ob Begin. Vision. High provision resolution of the Habitat Size Catagory below. The max pool bankfull depth should be 1.8 lims the mean bankfull depth (Habit Size Catagory below. The max pool bankfull depth should be 1.8 lims the mean bankfull depth should be 1.8 lims the lims the lims the lims the lims the lims of the counterbank of the observation of the downstream rifls. A Thalweg Position 1. Thalweg contening at upstream of meander bend (Run)? This metric is used to characterize flow paths along rifler-un-pool transitions. The thalweg is expected to be against the outer brank to the bond apps, but vectors oriented brank to exist brank to the brank pool pool transitions. The thalweg is expected to demonstrate flow path centre of the pool of the state of the bond apps, but vectors oriented brank to exist brank to the brank pool pool transitions. The thalweg is expected to demonstrate flow path centre of the path of the counterbank of the bond apps, but vectors oriented brank to exist brank to the pool of the counterbank of t	
distance between the tail of the upstream rifle and the head of the downstream rifle. 4. Thalweg Position 1. Thalweg centering at upstream of meander bend (Run)? 1. Thalweg centering at upstream of meander bend (Run)? 1. Thalweg centering at upstream of meander bend (Run)? 1. Thalweg centering at upstream of meander bend (Run)? 1. Thalweg centering at upstream of meander bend (Run)? 1. Thalweg centering at upstream of meander bend (Run)? 1. Thalweg centering at upstream of meander bend (Run)? 2. Thalweg centering at downstream of meander bend (Glide)? 3. Eank 4. Thalweg centering at downstream of meander bend (Glide)? 5. Ee Metric 4.1 above 5. Ee Metric 4.1 above 8. Banks with evident scour/erosion 9. Cellow. 1. Stable provides a guide for working thresholds for bank erosion risk. Italied bank segments are also characterized with respect to the schedule and are providing habitat. 9. Cellow. 9. Cellow. 9. Cellow. 1. Thalweg centering at upstream of meander bend (Run)? 1. Cellow. 1. Scoured Eroding Bank 1. Scoured Eroding	
2. Thalwag centering at downstream of meander bend (Glide)? 2. Thalwag centering at downstream of meander bend (Glide)? 3. Soured Eroding Bank 1. Scoured Eroding Bank 2. Undercut 1. Scoured Eroding Bank 2. Undercut 2. Undercut 2. Undercut 3. Scoured Eroding Bank 4. Scoured Eroding Bank 5. Scoured Eroding Bank 6. Scoured Eroding Bank 8. See Metric 4.1 above 8. See Footnote/Exhibt 5 below also continued bank erosion risk, tailled bank segments are also characterized with respect to the proximity and integrated extent of stabilizing vegetation. Continued erosion risk for a given bank instability object is Banks undercut/overhanging to the extent that mass wasting appears likely? Does NOT include undercuts that modest, and the proximity of the stabilizing vegetation and/or stabilizing roots. One or more mature trees in close appear sustainable/stable and are providing habitat. 9. See Footnote/Exhibt 5 below also continued bank erosion risk for a given bank instability object is Banks undercut/overhanging to the extent that mass wasting appears likely? Does NOT include undercuts that modest, and a see that the providing habitat. 9. See Footnote/Exhibt 5 below also continued erosion risk for a given bank object into the additional sub-category related to risk of their mistability (columns Literative and the providing habitat. 9. See Footnote/Exhibt 5 below also continued erosion risk for a given bank object into the additional sub-category related to risk of their instability (columns Literative and the providing habitat. 9. See Footnote/Exhibt 5 below also continued erosion risk for a given bank object into the additional sub-category related to risk of their mistability (columns	
2. Bank 1. Scoured Eroding Bank In order to better assess continued bank erosion risk, tallied bank segments are also characterized with respect to the proximity and integrated extent of stabilizing vegetation. Continued errosion risk for a given bank instability object is growingly and integrated downwards by adjacent mature vegetation and/or stabilizing roots. One or more mature trees in closed appear sustainable/stable and are providing habitat. This table provides a guide for working thresholds for bank object into the additional sub-category related to risk of truther instability object. Besindly, the vegetation and depth (e.g. from a BEH assessment). This table provides a guide for working thresholds for bank erosion cataloging/mapping based on bank height. For the bank height anges above, the minimum length of the stability and the sta	
In order to better assess continued bank erosion risk, tallied bank segments are also characterized with respect to the growingly and integrated extent of stabilizing vegetation. Continued erosion risk for a given bank instability object to Banks undercut/overhanging to the extent that mass wasting appears likely? Does NOT include undercuts that modest, sessentially adjusted downwards by adjacent mature vegetation. One or more mature trees in closes appear sustainable/stable and are providing habitat. This table provides a guide for working thresholds for part port the tallying of a given bank object in the additional sub-category related to risk of further instability (o <u>lumns 11</u> to the total data table). Essentially, the vegetative elements of rooting density and depth (e.g. from a BEH assessment). The actual data table). Essentially, the vegetative elements of rooting density and depth (e.g. from a BEH assessment).	
2. Undercut proximity and integrated extent of stabilizing vegetation. Continued erosion risk for a given bank instability object its Banks undercut/overhanging to the extent that mass wasting appears likely? Does NOT include undercuts that modest, essentially, adjusted downwards by adjacent and and/or stabilizing on. One or more mature trees in closes, one or more mature trees in closes, one or more mature trees in closes, or part and and or stabilizing one of cone or more mature trees in closes, or part and and or stabilizing or part and expensive stability of the extend and part and and or stabilizing or part and expensive stability of the mature and expensive stability of the stability of a given bank object into the additional sub-category related to risk of further instability (columns J-L). If the stability of the stability of a given bank object into the additional sub-category related to risk of further instability (columns J-L). For the bank height ranges above, the minimum length of the stability or part and depth (e.g. from a BEHI assessment).	
where banks are <3 feet high, only map an unstable segment if it is ≥ 10 feet. [†]	
3. Structures 1. Overall Integrity The assessment of engineered structure performance should include all structures that provide grade control, bank protection, or habitat functions. These include Vanes, J-hooks, and rootwads, etc. Bulk of structure physically intact with no dislodged boulders or logs? Using callours or some other means to me structure with red "5" if structure with red "5" if structural failure!	
2. Grade Control Bed grade control maintained across the cill structure? No evident loss of bad elevation immediately upstream of structure? Some piping alone will not constitute a loss of grade control. Using callbusts or some other means to m structure? Some piping alone will not constitute a loss of grade control.	aintain legibility, annotate grade control
2a. Piping Catalog structures lacking any substantial flow underneath sills or around arms? Using callouts or some other means to m structure with red "P" if significant piping	has occurred
See exhibit 4 below for determining structural sphere of influence. If the amount of bank that is deemed to be actively eroding within the structures ophere of influence exceeds 15% of the total bank footage within the structures ophere of influence exceeds 15% of the total bank footage within the structure shere of influence, then the structure should be classified as not providing adequate bank protection in the data table.	
At pools maintained (@ ~ Max Pool Depth : Mean Bankfull Depth > 1.6? For rootwads, habitat provision means interacting with baselfow and providing cover. Using callouts or some other means to me structure with paselfow and providing cover.	

Exhibit 1. Examples of bar features warranting concerning related to cataloging item 1.1.1 of the assessment

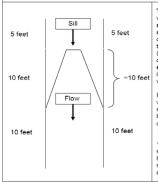
Exhibit 3. Residual Pool Depth Table - Relating 1.6 criterion for typical mean riffle depths to residual pool depths

This residual pool table was provided in the event the tracking of bankfull at each pool feature to estimate a Dmax was inconvenient. Estimating the residual pool depth by measuring the max pool depth to water surface and subtracting the water depth at the riffle head may provide a more convenient way under certain circumstances to estimate in the field. For this reason the exhibit table provides a relationship between the 1.6 criterion applied to mean riffle depth for the site and the resulting residual pool depths.

Mean Riffle Depth D _{bkf}	Multiplier	Target Bankfull Pool Max	Residual Pool Depth
1.0	1.6	1.6	0.6
1.5	1.6	2.4	0.9
2.0	1.6	3.2	1.2
2.5	1.6	4.0	1.5
3.0	1.6	4.8	1.8
3.5	1.6	5.6	2.1
4.0	1.6	6.4	2.4
4.5	1.6	7.2	2.7
E 0	16	0.0	20

5 = The above was developed because of the need to have a threshold given the large number of performers and to avoid spending time trying to catalog and map small objects that if excluded would have minimal overall impacts on the performance percentages. It is a guide that tries to strike a balance between the obvious need to have a threshold, yet provide confidence that the site conditions are accurately represented. For example, a scenario where 1 object nearly exceeding the threshold were to occur every 100 feet of bank height (which would be a high frequency and unlikely) with a bank height of 5 feet, would yield an error of ~3%. However, if the observer is encountering a truly high number of objects just below the threshold in the above table (e.g. > 1 per 100 feet of bank channel on average) and is concerned that the exclsuion of such objects is going to misrepresent the site conditions, then judgement should be applied and objects below the threshold may be cataloged. If a rare condition as described does occur and the thresholds are not utilized then a table footnote explaining this should be included.

Lastly, given the increase in overall area and the implications to stability, greater banks heights required smaller threshold minimums.


Exhibit 2. Graphic depicting embedding of riffles with fine material

Progressing from top to bottom, the series of graphics to the left depicts the fining of interstial spaces between coarser particles. This describes increasing levels of embeddeness in riffles. The observer must have an understanding of the intended substrate distributions/texture of the bed for the projects riffles when assessing this. However, as a guideline for streams in the coarse gravel to cobble range, the 2nd panel from the top represents a visual guideline for the condition that would begin to elicit concern for this parameter, but still contains a good deal of coarse material. Progressing from that state to the conditions depicted in the the 3rd and 4th panel represents a visual que for significant emdedding.

From USEPA (EPA 841-B-97-003 - Nov 1997)

Exhibit 4. Extent of Structural Influence for Bank Protection

The drawing is a guideline for the extent of influence vane arms exert on streem banks. The bracketed segment (10ft) immediately adjacent to the vane arm is multiplied by 5 to determine the total length of bank influenced by a cross vane. This includes the bank length adjacent to each vane arm, 11 length (10 feet) below each van arm, and ½ length (5 feet) on each bank above the uppermost structural element (in this case the vane sill), yielding 50 feet in this example case. In this example a single arm vane or j-hook would only influence 25ft of bank.

If the amount of recent bank erosion observed within the extent of influence exceeds 15% then the structure is deemed not to be providing adequate bank protection. In the above examples this would amount to ~ 8 and 4 feet, respectively.

If in an earlier assessment the structure failed the 15% bank protection criteria but the erosion has subsequently stabilized, then the observer can use best professional judgment to determine if the structure is currently meeting the bank protection criteria.

Table 6 <u>Vegetation Condition Assessment</u>

Planted Acreage¹

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Brown Hatch	3	0.55	1.3%
2. Low Stem Density Areas	Low Stem Density Areas Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria. 0.01 acres Brown Hatch		Brown Hatch	15	12.34	30.1%
Total					12.89	31.4%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	Brown Hatch	0	0.00	0.0%
Cumulative Tota			18	12.89	31.4%	

Easement Acreage ²	51.83					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	500 SF	Brown Hatch	7	0.83	1.6%
5. Easement Encroachment Areas ³	Areas or points (if too small to render as polygons at map scale).	none	Brown Hatch	0	0.00	0.0%

- 1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.
- 2 = The acreage within the easement boundaries.
- 3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.
- 4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EEP such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treatment such tree/shrub layers within the timeframes discussed and the potential impacts of treatment such projects with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particular interest given their extreme risk/threat level for mapping as points where <u>isolated</u> specimens are found, particularly ealry in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invas

High Concern:		Low/Moderate Concern:			
Vines	Genus/Species	Shrubs/Herbs	Genus/Species	Shrubs/Herbs	Genus/Species
Kudzu	Pueraria lobata		Polygonum cuspidatum	Japanese Privet	Ligustrum Japonicum
Porcelain Berry	Ampelopsis brevipeduncu		Celastrus orbiculatus	Glossy Privet	Ligustrum lucidum
Japanese Honeysuckle	Lonicera japonica	Multiflora Rose	Rosa multiflora	Fescue	Festuca spp.
Japanese Hops	Humulus japonicus	Russian olive	Elaeagnus angustifolia	English Ivy	Hedera helix
Wisterias	Wisteria spp.	Chinese Privet	Ligustrum sinense	Microstegium	Microstegium vimineum
Winter Creeper	Euonymus fortunei	Chinese Silvergrass	Miscanthus sinensis	Burning Bush	Euonymus alatus
Bush Killer (Watch List)	Cayratia japonica	Phragmites	Phragmites australis	Johnson Grass	Sorghum halepense
		Bamboos	Phyllostachys spp	Bush Honeysuckles	Lonicera, spp.
Trees		Sericea Lespedeza	Sericea Lespedeza	Periwinkles	Vinca minor
Tree of Heaven	Ailanthus altissima	Garlic Mustard (Watch List)	Alliaria petiolata	Morning Glories	Morning Glories
Mimosa	Albizia julibrissin	Cogon Grass (Watch List)	Imperata cylindrica	Bicolor Lespedeza (Watch List)	Lespedeza bicolor
Princess Tree	Paulownia tomentosa	Giant Reed (Watch List)	Arundo donax	Chinese Yams (Watch List)	Dioscorea oppositifolia
China Berry	Melia azedarach	Tropical Soda Apple (Watch List)	Solanum viarum	Air Potato (Watch List)	Dioscorea bulbifera
Callery Pear	Pyrus calleryana	Japanese Spirea (Watch List)	Spiraea japonica	Japanese Climbing Fern (Watch List)	Lygodium japonicum
White Mulberry	Morus alba	Japanese Barberry (Watch List)	Berberis thunbergii		1
Tallow Tree (Watch List)	Triadica sebifera	·			

Stream Station Photos

Photo 1. Looking downstream at XS-1

Photo 2. Looking downstream at XS-2

Photo 3. Looking downstream at XS-3

Photo 4. Looking downstream at XS-4

Photo 5. Looking downstream at XS-5

Photo 6. Looking downstream at XS-6

Photo 7. Looking downstream at XS-7

Photo 8. Looking downstream at XS-8

Photo 9. Looking downstream at XS-9

Photo 10. Looking downstream at XS-10

Photo 11. Looking downstream at XS-11

Photo 12. Looking downstream at XS-12

Vegetation Monitoring Plots MY-03 September 6, 2011

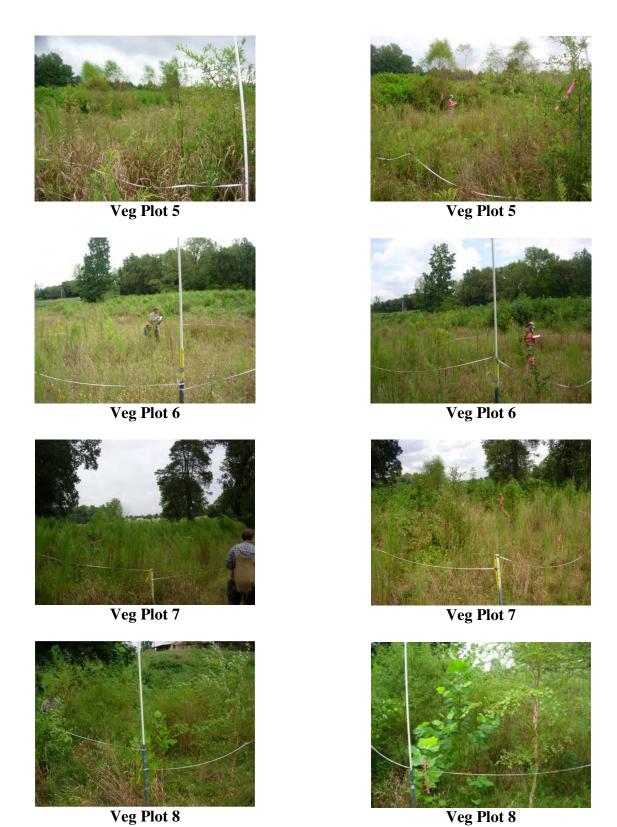
Vegetation Monitoring Plots MY-04 September 5, 2012

Veg Plot 1

Veg Plot 1

Veg Plot 2

Veg Plot 2


Veg Plot 3

Veg Plot 4

Veg Plot 4

Veg Plot 9

Veg Plot 10

Veg Plot 11

Veg Plot 12

Veg Plot 9

Veg Plot 10

Veg Plot 11

Veg Plot 12

Veg Plot 13

Veg Plot 14

Veg Plot 15

Veg Plot 13

Veg Plot 14

Veg Plot 15

Appendix C. Vegetation Plot Data

	Table 7. Vegetation	Plot Criteria Attainment	
Vegetation Plot ID	Vegetation Survival Threshold Met? (288 planted stems/acre)	Monitoring Year 04 Planted Stem Density stems/acre	Monitoring Year - 04 Total Stem Density stems/acre
VP1	Yes	323	1497
VP2	Yes	566	971
VP3	Yes	647	7972
VP4	No	242	1133
VP5	Yes	688	2590
VP6	Yes	323	3723
VP7	Yes	566	5989
VP8	Yes	485	3561
VP9	Yes	526	5463
VP10	No	283	4411
VP11	Yes	323	1376
VP12	No	283	3804
VP13	Yes	728	13193
VP14	Yes	485	91985
VP15	Yes	607	33548

Table 8. CVS Metadata

Report Prepared By The Catena Group Date Prepared 11/10/2012 0:00

database name

Upper UT to Cane Creek (Pickard).mdb
database location

F:

database location computer name

file size

DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT-----

Metadata Description of database file, the report worksheets, and a

summary of project(s) and project data.

Proj, planted Each project is listed with its PLANTED stems per acre,

for each year. This excludes live stakes.

Proj, total stems Each project is listed with its TOTAL stems per acre, for

each year. This includes live stakes, all planted stems, and

all natural/volunteer stems.

Plots List of plots surveyed with location and summary data (live

stems, dead stems, missing, etc.).

Vigor Frequency distribution of vigor classes for stems for all

plots.

Vigor by Spp Frequency distribution of vigor classes listed by species.

Damage List of most frequent damage classes with number of

occurrences and percent of total stems impacted by each.

Damage by Spp Damage values tallied by type for each species.

Damage by Plot Damage values tallied by type for each plot.

Planted Stems by Plot and Spp A matrix of the count of PLANTED living stems of each

species for each plot; dead and missing stems are excluded.

ALL Stems by Plot and spp A matrix of the count of total living stems of each species

(planted and natural volunteers combined) for each plot;

dead and missing stems are excluded.

PROJECT SUMMARY-----

Project Code 395

project Name Upper UT to Cane Creek (Picard)

Description UT to Cane Creek Stream and Wetland Enhancement

River Basin Cape Fear length(ft) 6782.59

stream-to-edge width (ft)

area (acres) 51.83

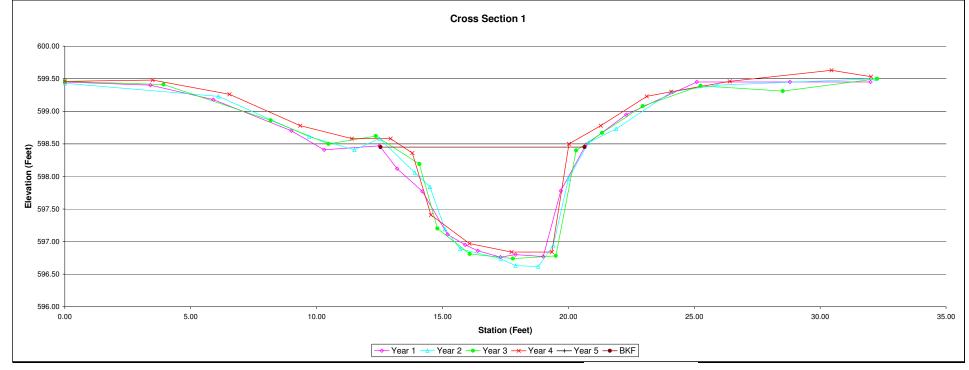
Required Plots (calculated)

Sampled Plots 15

20.000, por 10	t - Upper UT to Cane Creek (Pickard) EEP#	1	E30	5-AXE-(0001	F39	5-AXE-0	0002	E39	5-AXE-0	003	F39	5-AXE-(0004	F39	5-AXE-	0005	E39	5-AXE-	0006	F39	5-AXE-0		rent l
Scientific Name	Common Name	Species Type	PnoLS		T	PnoLS			PnoLS		T	PnoLS			PnoLS			PnoLS		Т	PnoLS			Pnol
Acer rubrum	red maple	Tree																		2		1		
Alnus serrulata	hazel alder	Shrub			1	1	1	2						1			1				1	1	1	
Aronia																						i		
Aronia arbutifolia	Red Chokeberry	Shrub																				1		
Baccharis halimifolia	eastern baccharis	Shrub												4									2	
Betula nigra	river birch	Tree				4	4	4	3	3	4	1			1	1	1				2	2	2	
Carpinus caroliniana	American hornbeam	Tree	1	1	1				1	1	1				2	2	2	1	1	2	2	2	2	
Carya	hickory	Tree																				1		
Carya cordiformis	bitternut hickory	Tree	1	1	1	. 1	1	1														1		
Celtis laevigata	sugarberry	Tree																			1	1	1	
Celtis occidentalis	common hackberry	Tree																			1	1	1	
Cephalanthus occidentalis	common buttonbush	Shrub	2	2	2	. 2	2	2							1	1	1	1	1	1		i		
Cornus amomum	silky dogwood	Shrub	1	1	1	. 1	1	1			1	. 3	3	3							1	1	1	
Corylus americana	American hazelnut	Shrub																			2	2	3	
Diospyros virginiana	common persimmon	Tree													3	3	3						1	
Fraxinus pennsylvanica	green ash	Tree			1	. 1	1	2	6	6	6	3	3	5			24	3	3	27	2	2	5	
Juglans nigra	black walnut	Tree																				i		
Juniperus virginiana	eastern redcedar	Tree									1			1						11		i		
Liquidambar styraciflua	sweetgum	Tree			1			1			175			13			11			46			123	
Liriodendron tulipifera	tuliptree	Tree																				i I		
Liriodendron tulipifera var. tulipifera	Tulip-tree, Yellow Poplar, Whitewood	Tree																				1		
Nyssa	tupelo	Tree																				i		
Pinus taeda	loblolly pine	Tree									1			1									2	
Platanus occidentalis	American sycamore	Tree	1	1	2			2	2	2	4				1	1	1	1	1	1		i		
Platanus occidentalis var. occidentalis	Sycamore, Plane-tree	Tree																				1		
Pyrus calleryana	Callery pear	Exotic																				1		
Quercus michauxii	swamp chestnut oak	Tree													4	4	4	2	2	2		1		
Quercus pagoda	cherrybark oak	Tree																			2	2	2	
Quercus phellos	willow oak	Tree	1	1	2	4	4	4	1	1	1				4	4	4					1		
Rhus copallinum	flameleaf sumac	shrub																					2	
Rhus glabra	smooth sumac	shrub																				í		
Rosa multiflora	multiflora rose	Exotic																				1		
Rosa palustris	swamp rose	Shrub			1																	1		
Salix nigra	black willow	Tree	1	1	24			5	3	3	3				1	1	12					í		
Sassafras albidum	sassafras	Tree																				í		
Ulmus alata	winged elm	Tree																				í		
Unknown		Shrub or Tree																				í		
Vaccinium	blueberry	Shrub																				í		
Color fo	or Density	Stem count	8	8	37	14	14	24	16	16	197	6	6	28	17	17	64	8	8	92	14	14	148	1
	irements by 10%	size (ares)		1			1			1			1			1			1			1		
•	ts, but by less than 10%	size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	$\overline{}$	f
	ments, by less than 10%	Species count	7	7	11	. 7		10	6		10	2	2	7	8	8	11	5	.5	8	9	9	14	
	ments by more than 10%	Stems per ACRE	323.7	323.7		566.6	566.6			647.5		242.8	242 0	1122	688	600	2590		222 7	2722	566.6	566.6	5989	485

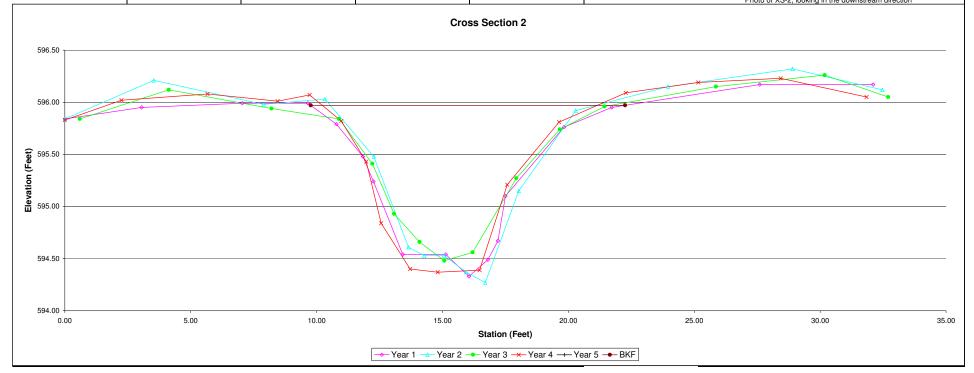
t Data (MY4 20	012)																										Annua	l Means	S				
5-AXE-0	800	E39	5-AXE-0	009	E395	5-AXE-0	010	E39!	5-AXE-(0011	E39!	5-AXE-0	0012	E39	5-AXE-0	0013	E395	-AXE-(0014	E39	5-AXE-	-0015	M	IY4 (20:	12)	M	IY3 (201	L1)	N	IY2 (20:	10)	M	IY1 (200	9)
P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т
	1																		5						8			17	,		27			1
														6	6	6			1			1	. 8	8	14	8	8	12	7	7	8	1	1	1
								1	1	1													1	1	1	. 1	1	2	2					
1	1																						1	1	1	. 1	1	1	. 1	1	1			
							3			1									1			1			12			10			1			
2	2	2	2	2	1	1	1							3	3	3							18							37	39	30	30	31
		1	1	1										4	4	5	1	1	2	2	2	2 2	15	15	18	12	12	14					\longmapsto	
																									_				2	2	4	5	5	5
		1	1	1																			2	2	2	5	5	1			7			
		1	1	1																			1	1	1	. 5	5	C	6	6	/	6	6	
		1	1	1										2	2	7	1	1	1				10	10	10	10	10	10	11	11	11	9	9	
		1	1	1							1	1	1				1						7	7	20	7	7	7	7 7	7	7	7	7	7
										1													2	2	4	. 2	2	3	3	3	3	3	3	
													1			1							3	3	6	3	3	11	3	3	6	2		4
	8	4	4	4	1	1	7	5	5	9	3	3	28			158	2	2	977	2	2	494.5	32	32	1756	33	33	438	35	35	2163	31	31	393
																										1	1	2	2	2	2			
																1									14			13	8		2			
	15			121			12			13			37			142			1275			312.5			2298	8		652			759			53
	1						2									1	1	1	1			1	. 1	1	6	1	1	8	2	2	16	3	3	3
										1															1							<u> </u>	1	
																			0						0	1	1	1	. 2	2	2	1	1	1
	0		2					4		1		- 1	7			2			3			11	22	22	9	22	22	21	22	22	2	40	10	2.2
 ' 	8							1	1	1	Τ	1	/			Z				6	6	5 11	22	22	41	. 22	22	31	. 22	22	30	18	18	22
																																		1
1	1				5	5	5				1	1	1				2	2	2	5	5	5 5	20	20	20	20	20	20	21	21	21	21	21	21
																	3	3	3				5	5	5	5 5	5	5	5 5	5	+	5		
1	1	2	2	2				1	1	1	1	1	1	3	3	3	2	2	2				20	20	21	. 20	20	22	20					19
																									2			1			1			
																															3			1
																												2						
																									1									
	50						79			4			18									1	. 5	5	196	5	5	120	5	5	98	5	5	80
																																		1
				1																					1									
										-													-				<u> </u>		$\frac{1}{1}$	1	1	1	1	1
43	00	4.3	4.2	435			400			2.4	_	_	0.4	4.0	40	220	43	42	2272	4.5	4-	- 020	475	475	4470	470	470	1420	100	400	2244	107	4.57	
12	88	13		135	7	7	109	8	_	34	7	1	94	18	18	326	12		2273	15		829	175		4478	178		1438	192		3241	167		668
0.02			0.02			0.02			0.02		-	0.02			0.02			0.02			0.02			15 0.37			15 0.37			15 0.37		\vdash	15 0.37	
5	10	7	7	a	3	3	7	Л	0.02	10	5	5.02	Q	5	5	12	7	7	12	4	0.02		19		29	20		28	3 19		27	17		22
		,						323.7	323.7		283.3	283.3	3804	Ū								7 33548							_		+			

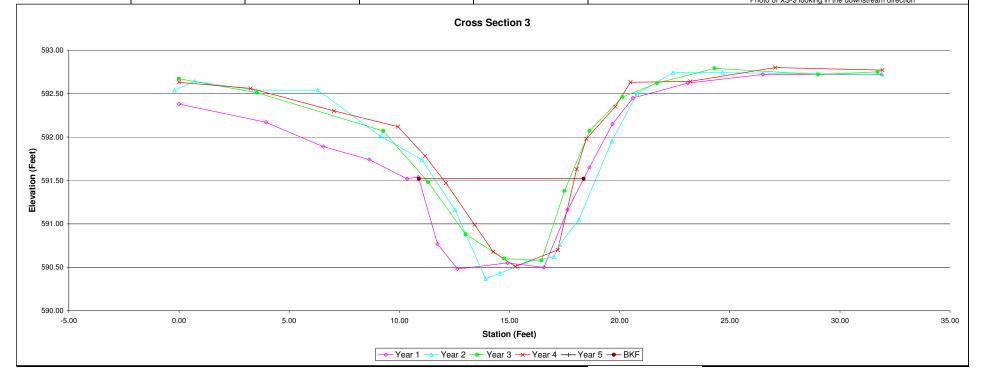
Appendix D. Stream Survey Data

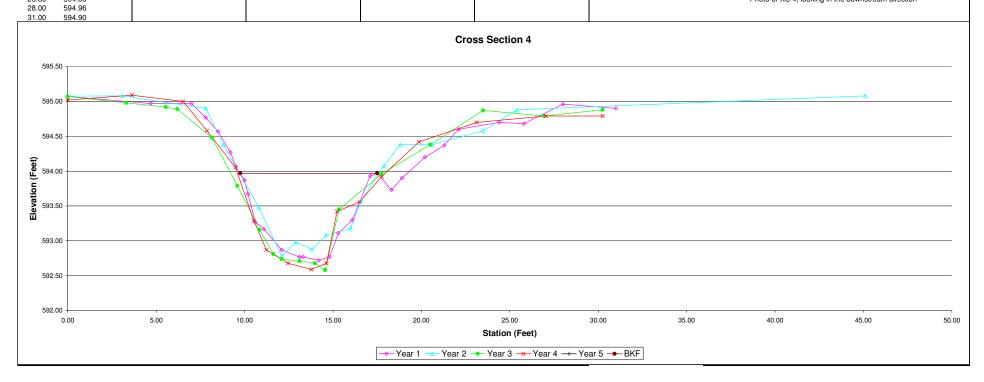

Feature		Pool			A (BKF)	9.0	8.8	9.4	8.2			
Station:		13+77 (Rea	ach 1)		W (BKF)	8.1	7.8	7.5	6.6			
Date:		3/13/12			Max d	1.7	1.8	1.7	1.6			
Crew:		SV, ZP			Mean d	1.1	1.1	1.3	1.2			
					W/D	N/A	N/A	5.9	5.2			
	MY01-200	9		MY02-201	0		MY03-201	1		MY04-201	2	
Station	Elevation	n Notes	Station	Elevation	Notes	Station	Elevation		Station	Elevation	Notes	
0.00	599.45		0.00	599.43		0.00	599.46	LPIN	0.00	599.46	LPIN	
3.40	599.40		6.10	599.23		3.92	599.41		3.49	599.48		
5.90	599.18		9.70	598.61		8.18	598.86		6.54	599.26		
9.00	598.70		11.50	598.41	3L Bankfull	10.47	598.50		9.35	598.78		
10.30	598.41	3L Bankfull	12.50	598.58		12.35	598.62	BANKFULL	11.40	598.58		
12.50	598.47		13.90	598.06		14.08	598.19		12.94	598.58	3L Bankfull	
13.20	598.12		14.50	597.84		14.80	597.20	TOE L	13.80	598.36		
14.20	597.77		15.10	597.19		16.08	596.81		14.54	597.41	TOE L	2
15.20	597.11		15.70	596.89	TOE L	17.80	596.74	TW	16.07	596.97		
15.90	596.95		17.30	596.74		19.50	596.78	TOE R	17.74	596.84	TW	友
16.40	596.86		17.90	596.63		20.31	598.40		19.34	596.84	TOE R	
17.30	596.76	TW	18.80	596.62	TW	21.34	598.67		20.02	598.50		
17.90	596.80		19.40	596.94	TOE R	22.95	599.08	TOBR	21.29	598.78		Δ
19.00	596.77		20.00	597.96		25.25	599.39		23.11	599.23		
19.70	597.78		20.80	598.52	R Bankfull I	28.52	599.31		24.08	599.30	R Bankfull I	3
20.70	598.49	3R Bankfull	21.90	598.73		32.26	599.50	RPIN	26.41	599.46		\$
22.30	598.95		24.10	599.30					30.45	599.63		
25.10	599.45		25.90	599.40					32.02	599.53	RPIN	8
28.80	599.45		32.20	599.50								姜
32.00	599.45											6
												4
												4
												4

MY1 MY2 MY3 MY4 MY5

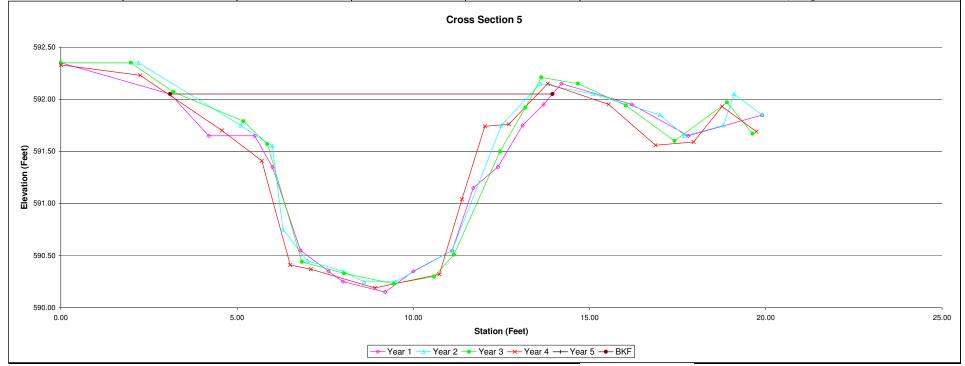
UT to Cane Creek (Pickard) Cross Section 1


Project: Cross Section:


Project:		UT to Cane	Creek (Pi	ckard)			Sun	nmary (bank	(full)		
Cross Sec	tion:	Cross Secti	on 2			MY1	MY2	MY3	MY4	MY5	
Feature		Riffle			A (BKF)	9.3	8.6	8.1	9.3		
Station:		17+52 Dow	nstream o	f Reach 1	W (BKF)	12.4	9.7	10.8	10.9		
Date:		3/13/12			Max d	1.6	1.7	1.5	1.6		
Crew:		SV, ZP			Mean d	0.8	0.9	0.8	0.8		
					W/D	16.5	10.9	14.3	12.9		
	MY01-2009	9		MY02-201	0		MY03-201	Ī		MY04-201	2
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
0.00	595.84		0.00	595.84		0.60	595.84	LPIN	0.00	595.83	LPIN
3.05	595.95		3.53	596.21		4.13	596.12		2.25	596.02	
7.05	595.99		7.90	595.98	3L Bankfull	8.21	595.94		5.67	596.08	
9.65	595.99	3L Bankfull	10.33	596.03		10.89	595.84	BANKFULL	8.45	596.01	
10.79	595.79		12.27	595.48		12.21	595.41		9.72	596.07	3L Bankfull
11.84	595.48		13.65	594.61	TOE L	13.08	594.93		10.98	595.82	
12.26	595.24		14.27	594.53		14.09	594.66	TOE L	11.97	595.43	
13.42	594.54	TOE L	15.06	594.53		15.07	594.48	TW	12.56	594.84	TOE L
15.13	594.54		15.94	594.37		16.20	594.56	TOE R	13.71	594.40	
16.05	594.33	TW	16.70	594.27	TW	17.93	595.27		14.81	594.37	TW
16.80	594.49	TOE R	18.03	595.15		19.66	595.74		16.47	594.39	TOE R
17.20	594.67		20.29	595.92	R Bankfull I	21.44	595.96	TOBR	17.57	595.21	
17.50	595.10		23.96	596.15		25.86	596.15		19.63	595.81	
19.82	595.76		28.90	596.32		30.18	596.26		22.28	596.09	R Bankfull I
21.72	595.95	R Bankfull I	32.47	596.12		32.70	596.05	RPIN	25.16	596.19	
27.60	596.17								28.43	596.23	
32.10	596.17								31.84	596.05	RPIN


Project:		UT to Cane	Creek (Pid	ckard)			Sur	nmary (bank	full)		
Cross Sec	tion:	Cross Secti	ion 3			MY1	MY2	MY3	MY4	MY5	
Feature		Pool			A (BKF)	6.1	6.9	4.1	4.0		
Station:		106+49 (Re	each 2)		W (BKF)	8.2	8.2	6.6	6.0		
Date:		3/13/12			Max d	1.1	1.4	0.9	1.0		
Crew:		SV, ZP			Mean d	0.7	8.0	0.6	0.7		
					W/D	N/A	N/A	10.5	9.0		
	MY01-200			MY02-201			MY03-201			MY04-2012	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
0.00	592.38		-0.21	592.54		0.00	592.67	LPIN	0.00	592.63	LPIN
3.95	592.17		0.70	592.64		3.54	592.51		3.25	592.56	
6.55	591.89		3.50	592.54		9.27	592.07	BANKFULL		592.30	
8.64	591.74		6.30	592.54		11.31	591.48		9.94	592.12	TOBL
10.35		3L Bankfull	9.14	592.01		13.01	590.88	TOE L	11.17	591.78	
10.87	591.54		11.02		3L Bankfull	14.75	590.60	TW	12.12	591.47	Bankfull Le
11.73	590.77		12.53	591.16		16.46	590.58	TOE R	13.42	590.99	
12.64	590.48	TOE L	13.91	590.37	TW	17.50	591.38		14.26	590.68	TOE L
14.91	590.55	TW	14.56	590.43		18.64	592.07		15.26	590.51	TW
16.56	590.50	TOE R	15.76	590.56		20.13	592.46	TOBR	17.19	590.70	TOE R
17.64	591.16		17.02	590.62	TOE R	21.70	592.62		18.05	591.63	
18.63	591.65	R Bankfull I	17.28	590.76		24.32	592.79		18.49	591.98	
19.68	592.15		18.15	591.05		29.01	592.72		19.81	592.35	
20.61	592.45		19.64		R Bankfull I	31.72	592.75	RPIN	20.49	592.63	R Bankfull
23.10	592.62		20.79	592.50					23.21	592.64	
26.50	592.72		22.43	592.74					27.06	592.80	
31.90	592.72		24.67	592.74					31.93	592.77	RPIN
			31.92	592.72							

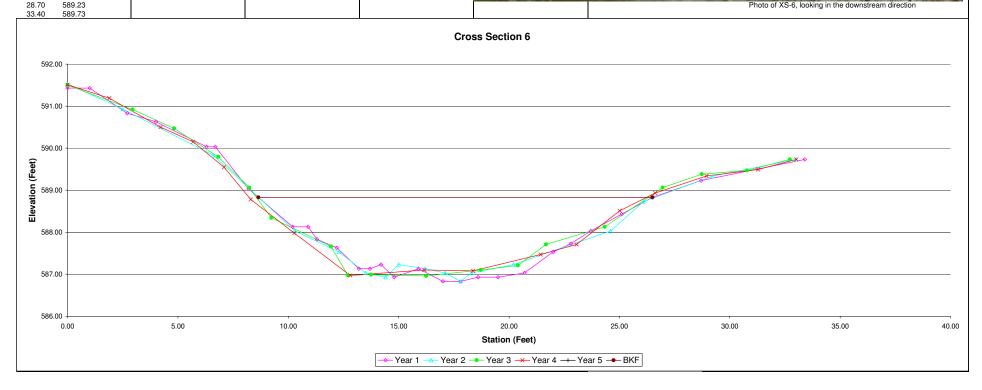
					1						
Project:		UT to Cane		ckard)				nmary (bank			
Cross Sec	ction:	Cross Secti	ion 4		1	MY1	MY2	MY3	MY4	MY5	
Feature		Riffle			A (BKF)	6.1	8.8	6.5	6.7		
Station:		102+05 Up	stream of F	Reach 2	W (BKF)	8.6	9.8	8.6	8.4		
Date:		3/13/12			Max d	1.2	1.6	1.4	1.4		1
Crew:		SV, ZP			Mean d	0.7	0.9	8.0	0.8		
					W/D	12.1	11.0	11.3	10.4		
	MY01-200	9		MY02-201	0		MY03-201	1		MY04-201	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation		Station	Elevation	
0.00	595.07		-3.40	595.07		0.00	595.07	LPIN	0.00	595.02	LPIN
4.70	594.97		3.10	595.08		3.31	594.98		3.63	595.09	į.
7.00	594.97		7.80	594.90		5.55	594.92		6.52	595.00	TOBL
7.80	594.77		8.80	594.38	3L Bankfull	6.20	594.89	BANKFULL	7.87	594.58	
8.50	594.57		10.80	593.48		8.15	594.48		9.49	594.05	3ankfull Lef
9.20	594.27		12.10	592.78	TW	9.59	593.79		10.52	593.29	į.
9.50	594.07		12.90	592.98		10.85	593.16		11.24	592.87	TOE L
10.00	593.87	3L Bankfull	13.80	592.88		11.63	592.81	TOE L	12.46	592.68	
10.20	593.67		14.60	593.08		12.09	592.74		13.77	592.59	TW
10.60	593.27	TOE L	16.00	593.18	TOE R	13.11	592.71	TW	14.63	592.68	TOE R
11.10	593.17		16.60	593.58		13.98	592.68		15.23	593.42	No.
12.10	592.87		17.90	594.08		14.56	592.58	TOE R	16.51	593.56	1
13.10	592.77		18.80	594.38	R Bankfull I	15.35	593.45		17.75	593.92	R Bankfull I
13.30	592.77		20.60	594.38		17.74	593.96		19.86	594.42	į.
14.20	592.72	TW	23.50	594.58		20.50	594.38	TOBR	23.13	594.70	
14.80	592.77		25.40	594.88		23.49	594.87		27.04	594.79	
15.30	593.11		45.10	595.08		26.95	594.79		30.25	594.79	RPIN
16.10	593.30	TOE R				30.25	594.88	RPIN			
17.10	593.93										
17.50	593.97										8
18.30	593.73										
18.90	593.90	R Bankfull F	Right								8
20.20	594.20		l								
21.30	594.37										6
22.10	594.60										
24.40	594.70										9
25.80	594.68										ř
28.00	594.96										
25.00	554.50		I								



Cross Sec	tion:	Cross Secti	on 5			MY1	MY2	MY3	MY4	MY5	
Feature		Pool			A (BKF)	11.1	11.1	10.7	10.9		
Station:		23+71			W (BKF)	10.8	10.4	10.0	10.5		
Date:		3/13/12			Max d	1.9	1.9	1.8	1.9		
Crew:		SV, ZP			Mean d	1.0	1.1	1.1	1.0		
					W/D	N/A	N/A	9.4	10.1		
	MY01-200	9		MY02-201	0		MY03-2011			MY04-2012	2
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
0.00	592.35		0.00	592.35		0.00	592.35	LPIN	0.00	592.33	LPIN
3.10	592.05	3L Bankfull	2.20	592.35	3L Bankfull	1.99	592.35	BANKFULI	2.25	592.23	3L Bankfull
4.20	591.65		5.10	591.75		3.19	592.07		4.57	591.70	
5.50	591.65		6.00	591.55		5.18	591.79		5.70	591.41	
6.00	591.35		6.30	590.75		5.86	591.57		6.51	590.41	TOE L
6.80	590.55	TOE L	7.00	590.45	TOE L	6.84	590.44	TOE L	7.09	590.37	
7.60	590.35		8.00	590.35		8.04	590.33		8.91	590.19	TW
8.00	590.25		8.60	590.25		9.45	590.23	TW	10.74	590.32	TOE R
9.20	590.15	TW	9.50	590.25	TW	10.59	590.30		11.38	591.04	
10.00	590.35		11.10	590.55	TOE R	11.15	590.51	TOE R	12.03	591.74	9
11.10	590.55	TOE R	12.50	591.75		12.46	591.50		12.71	591.76	
11.70	591.15		13.60	592.15	R Bankfull I	13.18	591.92		13.81	592.15	R Bankfull
12.40	591.35		15.10	592.05		13.63	592.21	TOBR	15.54	591.95	
13.10	591.75		17.00	591.85		14.67	592.15		16.87	591.56	i i
13.70	591.95	R Bankfull I	17.70	591.65		16.03	591.94		17.95	591.59	7
14.20	592.15		18.80	591.75		17.41	591.60		18.76	591.93	
16.20	591.95		19.10	592.05		18.90	591.97		19.73	591.69	RPIN
17.80	591.65		19.90	591.85		19.62	591.67	RPIN			
19.90	591.85										
											ğ
											Ď.

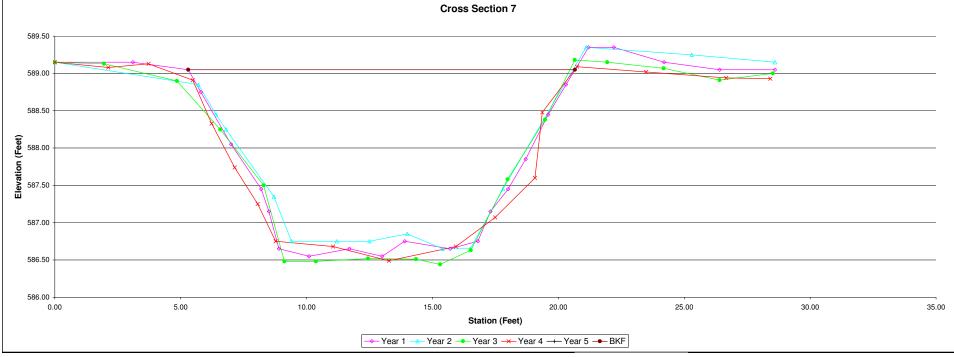
Project:

UT to Cane Creek (Pickard)

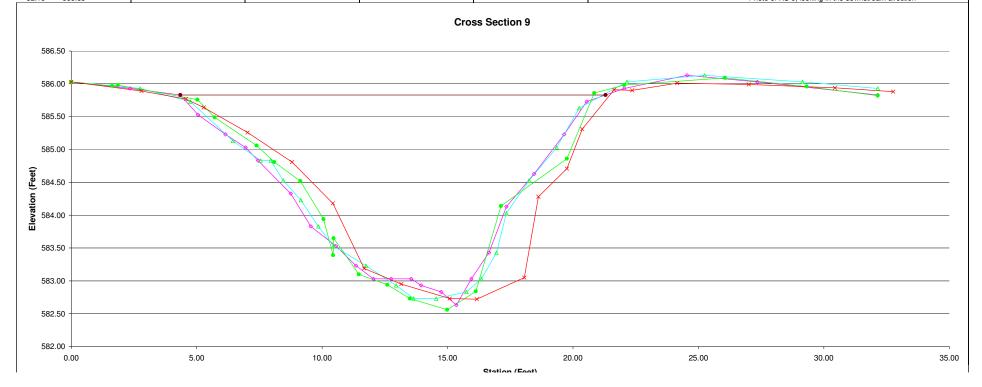


Cross Sec	ction:	Cross Secti	ion 6			MY1	MY2	MY3	MY4	MY5	
Feature		Riffle			A (BKF)	22.2	22.2	21.8	22.6		1
Station:		29+10 Upst	tream of R	leach 3	W (BKF)	17.8	17.8	17.8	18.0		1
Date:		3/13/12			Max d	2.0	2.0	1.9	1.9		1
Crew:		SV, ZP			Mean d	1.2	1.2	1.2	1.3		1
					W/D	14.3	14.3	14.5	14.4		1
	MY01-200	9		MY02-201	0		MY03-201	1		MY04-201	2
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
0.00	591.43		0.00	591.53		0.00	591.50	LPIN	0.00	591.51	LPIN
1.00	591.43		2.50	590.93		2.95	590.92		1.89	591.19	
2.70	590.83		6.60	589.83		4.83	590.47	BANKFULI	4.21	590.50	
4.00	590.63		10.30		3L Bankfull		589.79		5.69		3L Bankfull
6.30	590.03		12.30	587.53		8.23	589.06		7.09	589.55	
6.70	590.03		13.50	587.03	TOE L	9.23	588.34		8.30	588.78	
8.20	589.03	3L Bankfull	14.40	586.93		11.94	587.66		10.27	587.98	
10.20	588.13		15.00	587.23		12.69	586.98	TOE L	12.81	586.97	TOE L
10.90	588.13		16.20	587.13		13.75	586.99		16.16	587.10	TW
11.30	587.83		17.10	587.03		16.24	586.96	TW	18.37	587.08	
12.20	587.63		17.80	586.83	TW	18.72	587.10		21.43	587.47	TOE R
13.20	587.13	TOE L	18.30	587.03	TOE R	20.40	587.21	TOE R	23.06	587.71	
13.70	587.13		20.20	587.23		21.68	587.71		25.01	588.51	
14.20	587.23		24.60	588.03		24.34	588.13		26.62	588.93	
14.80	586.93		26.10	588.73	R Bankfull I	26.96	589.06		28.95	589.34	R Bankfull
15.90	587.13		29.20	589.33		28.73	589.38	TOBR	31.28	589.49	
17.00	586.83	TW	33.00	589.73		30.78	589.47		33.01	589.73	RPIN
17.80	586.83					32.72	589.73	RPIN			
18.60	586.93										
19.50	586.93										
20.70	587.03	TOE R									
22.00	587.53										
22.80	587.73										
23.70	588.03										
25.10	588.43										
26.50	588.83	R Bankfull F	Right								
28.70	589.23										

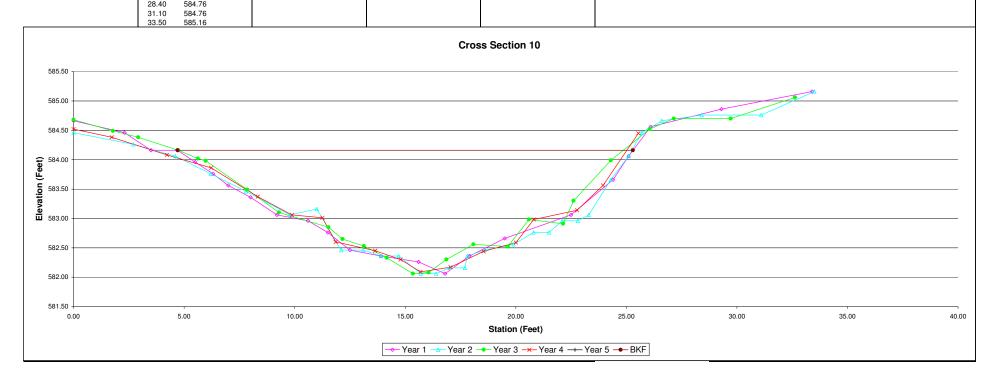
Project:


UT to Cane Creek (Pickard)

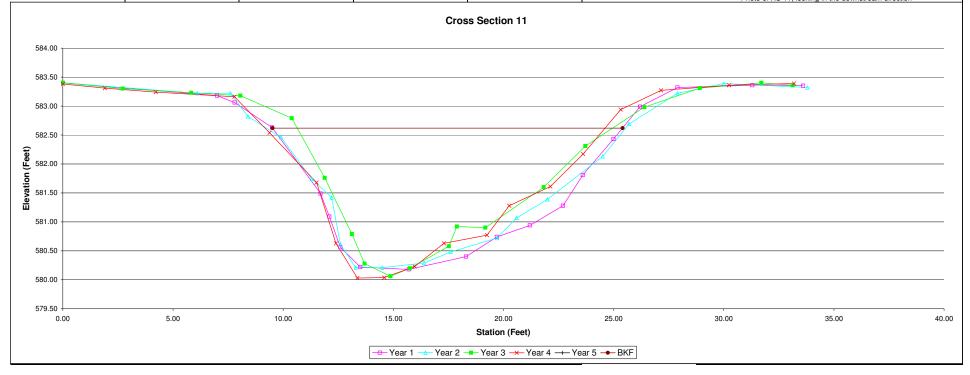
Project:		UT to Cane	Creek (Pi	ckard)			Sur	nmary (bank	(full)		
Cross Secti	ion:	Cross Secti	ion 7			MY1	MY2	MY3	MY4	MY5	
Feature		Riffle			A (BKF)	26.3	22.4	21.8	22.6		
Station:		32+03 (Rea	ach 3)		W (BKF)	15.2	14.5	17.8	18.0		
Date:		3/13/12			Max d	2.5	2.2	1.9	1.9		
Crew:		SV, ZP			Mean d	1.7	1.5	1.2	1.3		
					W/D	8.8	9.4	14.5	14.4		
	MY01-200	9		MY02-201	0		MY03-201	1		MY04-201	2
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation		Station	Elevation	
0.00	589.15		0.00	589.15		0.00	589.15	LPIN	0.00	589.15	LPIN
3.10	589.15		5.70	588.85	BL Bankfull	1.96	589.13		2.12	589.08	
5.30	589.05	3L Bankfull	6.40	588.45		4.85	588.90	BANKFULL	3.72	589.13	
5.80	588.75		6.80	588.25		6.57	588.25		5.48	588.91	3L Bankfull
7.00	588.05		8.70	587.35		8.29	587.50		6.23	588.33	
8.20	587.45		9.40	586.75	TOE L	9.12	586.48	TOE L	7.14	587.74	
8.50	587.15		11.20	586.75		10.37	586.48		8.06	587.25	
8.90	586.65	TOE L	12.50	586.75		12.44	586.52		8.77	586.75	TOE L
10.10	586.55		14.00	586.85		14.35	586.51		11.05	586.68	
11.70	586.65		15.40	586.65	TW	15.30	586.44	TW	13.27	586.49	TW
13.00	586.55	TW	16.50	586.65	TOE R	16.52	586.63	TOE R	15.93	586.68	
13.90	586.75		17.80	587.45		17.98	587.58		17.49	587.07	TOE R
15.70	586.65		21.10	589.35	R Bankfull I	19.47	588.38		19.07	587.60	
16.80	586.75	TOE R	25.30	589.25		20.65	589.18	TOBR	19.36	588.48	
17.30	587.15		28.60	589.15		21.94	589.15		20.74	589.09	R Bankfull I
18.00	587.45					24.18	589.07		23.48	589.02	
18.70	587.85					26.40	588.91		26.66	588.94	
19.60	588.45					28.52	589.00	RPIN	28.42	588.93	RPIN
20.30	588.85										
21.20	589.35	3R Bankfull	right								
22.20	589.35										
24.20	589.15										
26.40	589.05										
28.60	589.05										



Project:		UT to Cane	Creek (Pi	ckard)	T		Sur	nmary (bank	full)			
Cross Sect		Cross Sect		onara)		MY1	MY2	MY3	MY4	MY5		
Feature		Riffle			A (BKF)	24.4	23.7	25.8	25.1			
Station:		36+76 Dow	nstream of	Reach 3	W (BKF)	18.3	17.6	18.0	18.5			
Date:		3/13/12			Max d	2.3	2.2	2.5	2.3			
Crew:		SV, ZP			Mean d W/D	1.3 13.7	1.3 13.1	1.4 12.5	1.4 13.7			White first the state of the st
	MY01-2009			MY02-201			MY03-201			MY04-2012		
Station	Elevation 587.47	Notes	Station	Elevation 587.57	Notes	Station 0.00	Elevation 587.30	Notes LPIN	Station	Elevation	Notes LPIN	
0.00 4.00	587.57		0.00 4.50	587.57		2.96	587.36	LPIN	0.00 2.93	587.30 587.37	LPIN	
6.20	587.47		7.00	587.47		4.51	587.38		5.56	587.46		6.4.6.14.5.6.6.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
7.00	587.37		9.40		3L Bankfull	6.01		BANKFULL	6.84	587.39		
7.90		BL Bankfull	11.00	586.07		8.72	586.92		8.02		3L Bankfull	2016年中,1916年中,1
9.00	586.77		12.30	585.37		11.55	585.91		8.91	586.75		
9.60 10.30	586.57		13.90 14.40	585.17 584.67	TOE L	12.72 13.90	585.17	TOE L	10.28 12.03	586.42 585.82		
11.00	586.37 586.07		15.50	584.67	TW	14.94	585.04 584.57		13.21	585.18	TOE L	
11.60	585.67		15.90	584.67	1 **	16.44	584.51	TW	14.87	584.75	IOLL	
12.30	585.27		17.10	584.67		18.67	584.64		17.41	584.63	TW	
13.00	584.97	TOE L	18.50	584.87		20.69	584.91	TOE R	19.55	584.77		
13.80	585.17		20.20	584.77		22.23	586.13		22.17	585.94		
14.20	584.77	T14/	21.00	584.97	TOE R	23.99	586.17		23.62	586.04		
15.70 16.90	584.67 584.77	TW	22.30 23.70	586.27 586.07		26.76 28.59	587.08 587.29	TOBR	24.94 26.19	586.27 586.76		
17.90	584.87		25.30	586.47	R Bankfull	30.61	587.33	TODIT	27.91		R Bankfull	
18.70	584.97		27.50	587.17	TT Barman	31.47	587.37	RPIN	29.62	587.41	Damaan	
19.90	585.07		31.60	587.37					31.60	587.31	RPIN	
20.66	585.27											
21.10	585.37	TOE R										
21.70 22.20	585.77 585.97											
23.00	586.07											
23.90	586.27											100 3/09/2012 100/AM
24.70	586.47											
25.60	586.77											Photo of XS-8, looking in the downstream direction
26.80 28.50	586.97 587.37	R Bankfull I	Right									
29.70	587.27											
31.90	587.37										Cro	s Section 8
588.0	00											
587.9	50			>_ ≙	V							
	*		-×		X							
587.0	00											
	-						XIX					
Elevation (Feet)	JU -							*				
F												
. 5 586.0	00											
/at								1	X			√
<u> </u>	50 L								1111			
ш экэ.:	70]								14			
									de.	X		
585.0	00											
											*	
584.	₅₀ L									<u> </u>	402	× ·
584.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
584.0	0.00			5.00			10.	20			15.00	20.00 25.00 30.00 35.00
	0.00			5.00			10.	JU			15.00	
												Station (Feet)
										Year 1 -	Year 2	⊢ Year 3 -× Year 4 - Year 5 - BKF

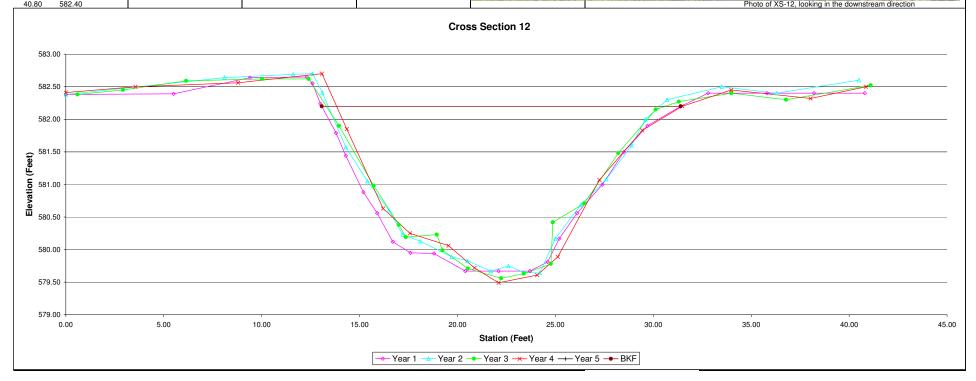

Project:		UT to Cane	Creek (Pi	ckard)			Sun	nmary (bank	rfull)		
Cross Sec	tion:	Cross Sect		,		MY1	MY2	MY3	MY4	MY5	
Feature		Pool			A (BKF)	28.4	28.5	28.4	29.4		
Station:		43+03 (Rea	ach 4)		W (BKF)	16.8	17.7	16.8	17.8		
Date:		3/13/12			Max d	3.2	3.1	3.3	3.1		
Crew:		SV, ZP			Mean d	1.7	1.6	1.7	1.7		
					W/D	N/A	N/A	9.9	10.8		
	MY01-200	9		MY02-201	0		MY03-2011	Ī		MY04-201	2
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
0.00	586.03		0.00	586.03		0.00	586.03	LPIN	0.00	586.03	LPIN
2.35	585.93		2.75	585.93		1.63	585.97		2.80	585.89	
4.35	585.83		4.75	585.73	3L Bankfull	1.86	585.98		4.57	585.77	3L Bankfull
5.05	585.53		6.45	585.13		5.03	585.76		5.28	585.64	
6.15	585.23	3L Bankfull	7.55	584.83		5.72	585.49	BANKFULI	7.03	585.26	
6.95	585.03		7.95	584.83		7.39	585.06		8.80	584.81	
7.45	584.83		8.45	584.53		8.09	584.81		10.43	584.18	
8.75	584.33		9.15	584.23		9.13	584.52		11.68	583.19	TOE L
9.55	583.83		9.85	583.83		10.06	583.94		13.16	582.95	
10.55	583.53		10.45	583.53	TOE L	10.44	583.39	TOE L	15.09	582.73	TW
11.35	583.23		11.75	583.23		10.46	583.65		16.17	582.72	
12.05	583.03	TOE L	12.95	582.93		11.47	583.10		18.06	583.05	TOE R
12.75	583.03		13.65	582.73	TW	12.60	582.94		18.62	584.28	
13.55	583.03		14.55	582.73		13.50	582.73	TW	19.76	584.71	
13.95	582.93		15.75	582.83		14.99	582.56		20.37	585.31	
14.75	582.83		16.35	583.03	TOE R	16.13	582.84	TOE R	21.64	585.91	R Bankfull
15.35	582.63	TW	16.95	583.43		17.13	584.14		22.36	585.90	
15.95	583.03		17.35	584.03		19.76	584.86		24.15	586.01	
16.65	583.43		18.25	584.53		20.85	585.86	TOBR	27.01	585.99	
17.35	584.13		19.35	585.03		22.04	585.98		30.44	585.94	
18.45	584.63		20.25	585.63	3R Bankfull	26.06	586.09		32.76	585.88	RPIN
19.65	585.23	R Bankfull I	22.15	586.03		29.32	585.96				
20.55	585.73		25.25	586.13		32.15	585.82	RPIN			
22.05	585.93		29.15	586.03							
24.55	586.13		32.15	585.93							
27.35	586.03										
32.15	585.83										

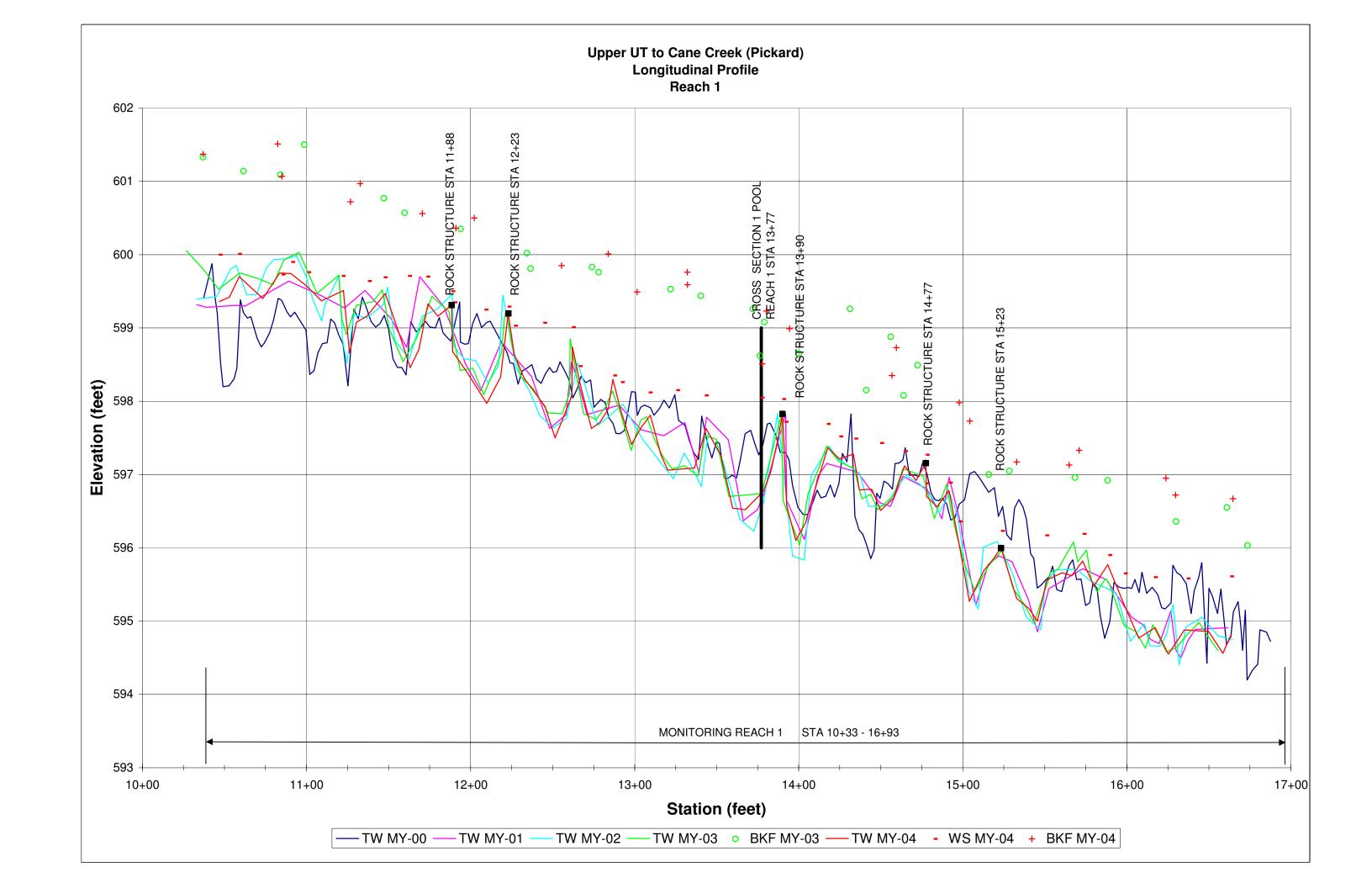
Project:		UT to Cane	Creek (Pic	ckard)	Summary (bankfull)							
Cross Sec	tion:	Cross Section	on 10			MY1	MY2	MY3	MY4	MY5		
Feature		Riffle			A (BKF)	24.5	24.9	23.7	24.6			
Station:		48+08 B/W	Reach 4 a	nd 5	W (BKF)	20.6	21.1	20.1	21.5			
Date:		3/13/12			Max d	2.0	2.0	2.1	2.1			
Crew:		SV, ZP			Mean d	1.2	1.2	1.2	1.1			
					W/D	17.3	17.9	17.1	18.7			
	MY01-200			MY02-201			MY03-2011			MY04-2012		
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation		Station	Elevation		
0.00	584.66	\neg	0.00	584.46		0.00	584.68	LPIN	0.00	584.52	LPIN	
2.30	584.46		2.70	584.26		1.78	584.49		1.73	584.38		
3.50	584.16		4.60	584.06	3L Bankfull	2.92	584.38	ľ	4.22		3L Bankful	
4.70	584.16	3L Bankfull	6.20	583.76		4.73	584.16	ľ	6.22	583.86		
5.50	583.96		7.80	583.46		5.62		BANKFULL		583.37		
6.30	583.76		9.80	583.06		5.98	583.98	ľ	9.87	583.06		
7.00	583.56		11.00	583.16		7.85	583.49	ľ	11.25	583.01		
8.00	583.36		12.10	582.46	TOE L	9.29	583.10	ľ	11.85	582.60	TOE L	
9.20	583.06		13.10	582.46		11.53	582.85		13.64	582.45		
10.60	582.96		13.90	582.36		12.16	582.65	ľ	14.79	582.30		
11.50	582.76		14.70	582.36		13.13	582.53		15.69	582.09	TW	
12.50	582.46		15.70	582.06	TW	14.16	582.33	ľ	17.05	582.17		
13.90	582.36		16.40	582.06		15.35	582.06	ľ	18.54	582.44		
15.60	582.26		17.00	582.16		16.06	582.08	TW	20.01	582.59	TOE R	
16.80	582.06	TW	17.70	582.16		16.86	582.30	TOE R	20.81	582.98		
17.90	582.36		17.80	582.36		18.08	582.56	ľ	22.77	583.14		
19.50	582.66		18.60	582.46		19.64	582.52	ľ	23.94	583.56		
22.50	583.06		19.90	582.56	TOE R	20.59	582.98	ľ	25.54	584.45	R Bankfull	
24.40	583.66		20.80	582.76		22.14	582.91	ľ	1			
25.10	584.06	R Bankfull I	21.50	582.76		22.61	583.30	ľ	1			
26.10	584.56		22.10	582.96		24.30	583.99	ľ	1			
29.30	584.86		22.80	582.96		26.05	584.52	ľ	1			
33.40	585.16		23.30	583.06		27.15	584.70	TOBR	1			
			24.30	583.66		29.72	584.70	ľ	1			
			25.10	584.06	R Bankfull I	32.63	585.06	RPIN	1			
			25.70	584.46		1		ľ	1			
			26.60	584.66				ľ	1			
			28.40	584.76		1		ľ	1			

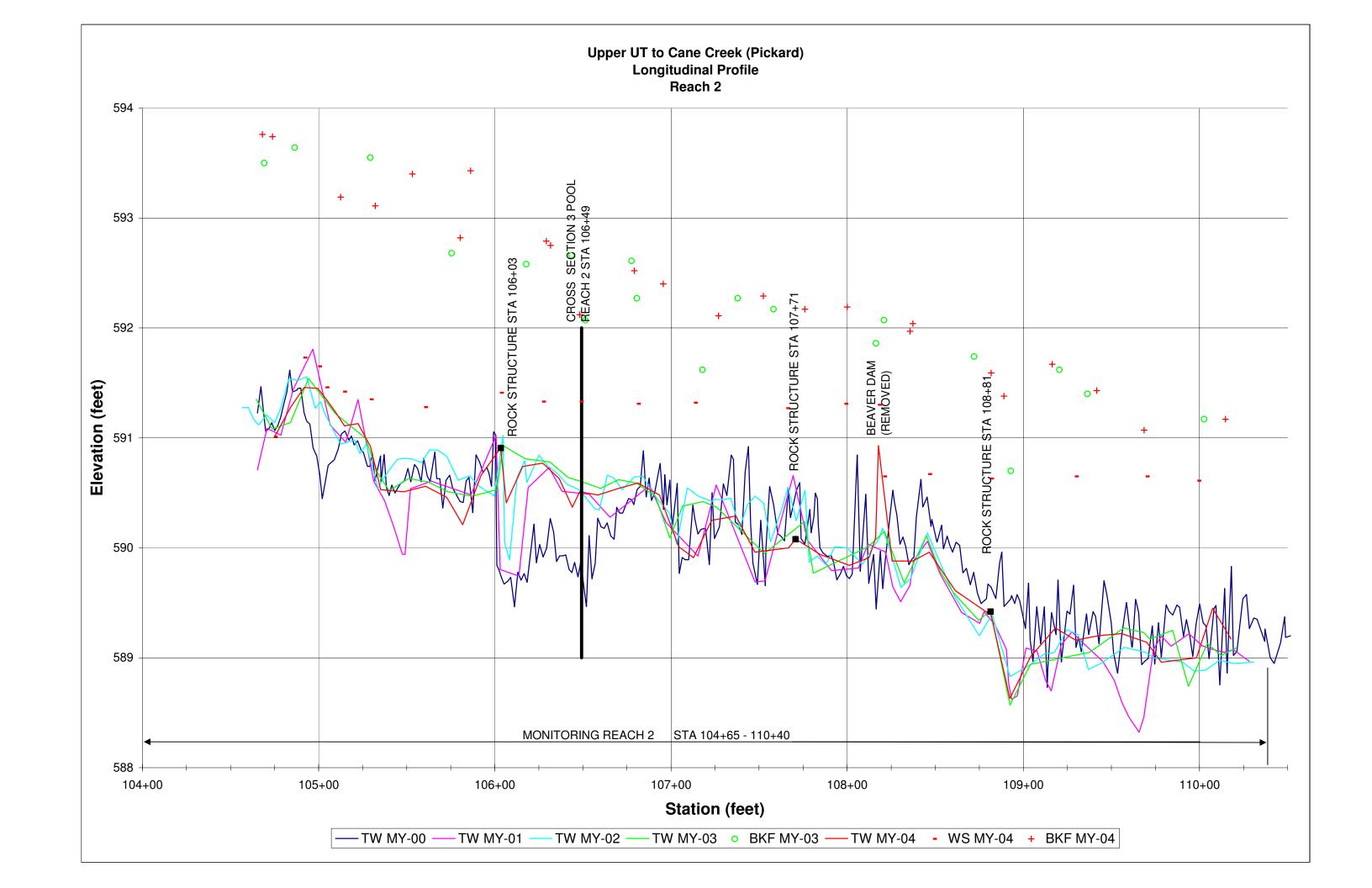


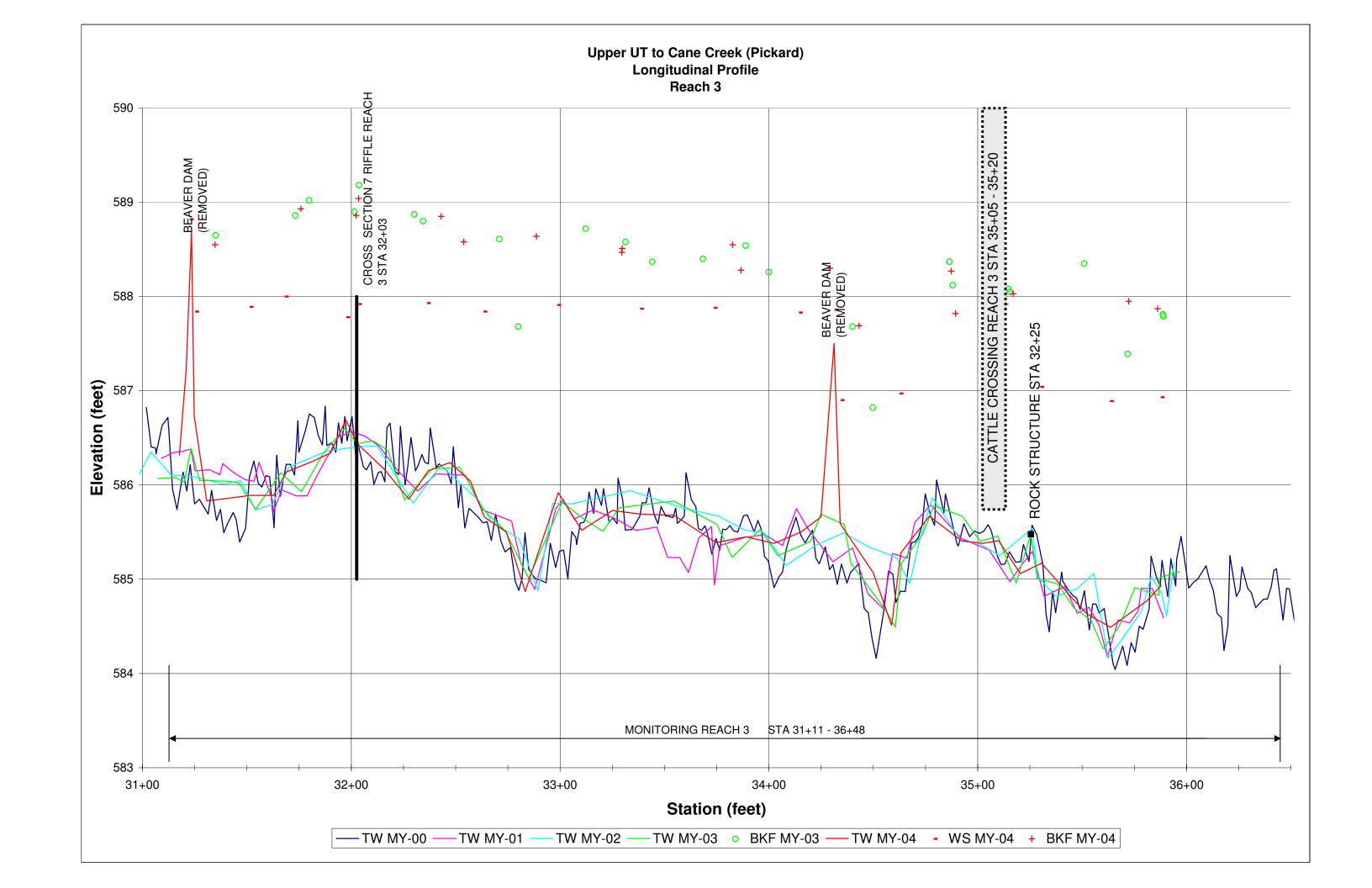
Cross Sec	ction:	Cross Secti	on 11			MY1	MY2	MY3	MY4	MY5	7
Feature		Riffle			A (BKF)	25.7	25.8	20.5	23.0		9
Station:		52+76 (Rea	ach 5)		W (BKF)	15.9	17.0	14.3	15.4		6
Date:		3/13/12			Max d	2.4	2.5	2.6	2.6		Ž.
Crew:		SV, ZP			Mean d	1.6	1.5	1.4	1.5		18
					W/D	9.8	11.2	10.0	10.4		8
	MY01-200	9		MY02-201	0		MY03-201	l		MY04-2012	2
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
0.00	583.40		0.00	583.40		0.00	583.40	LPIN	0.00	583.38	LPIN 🚪
7.00	583.18		6.10	583.22		2.72	583.30		1.91	583.31	1
7.80	583.06		7.60	583.22		5.83	583.23		4.22	583.24	9
9.50	582.63	3L Bankfull	8.40	582.82	3L Bankfull	8.06	583.18	BANKFULL	7.79	583.16	TOBL
11.70	581.49		9.90	582.46		10.39	582.79		9.38	582.54	Bankfull Lef
12.10	581.09		11.30	581.74		11.89	581.76		11.52	581.68	9
12.60	580.56	TOE L	12.20	581.42		13.12	580.79	TOE L	12.40	580.63	TOE L
13.50	580.22		12.60	580.61		13.70	580.28		13.37	580.03	
15.70	580.18	TW	13.30	580.21	TOE L	14.87	580.06	TW	14.59	580.04	TW
18.30	580.40		14.50	580.21	TW	15.75	580.20		15.97	580.23	TOE R
19.70	580.74		16.40	580.29		17.52	580.58	TOE R	17.30	580.63	
21.20	580.94		17.60	580.48		17.89	580.92		19.25	580.77	9
22.70	581.28	TOE R	19.70	580.72	TOE R	19.18	580.90		20.26	581.28	2
23.60	581.81		20.60	581.07		21.83	581.60		22.13	581.61	
25.00	582.43	R Bankfull I	22.00	581.39		23.72	582.31		23.62	582.17	*
26.20	582.99		24.50	582.13		26.40	582.98		25.32	582.94	R Bankfull
27.90	583.32		25.70	582.69	R Bankfull I	28.91	583.31	TOBR	27.15	583.27	76
31.30	583.36		27.90	583.22		31.71	583.40		30.24	583.36	K
33.60	583.35		30.00	583.39		33.14	583.36	RPIN	33.19	583.39	RPIN 📗
			33.80	583.32							5
											2

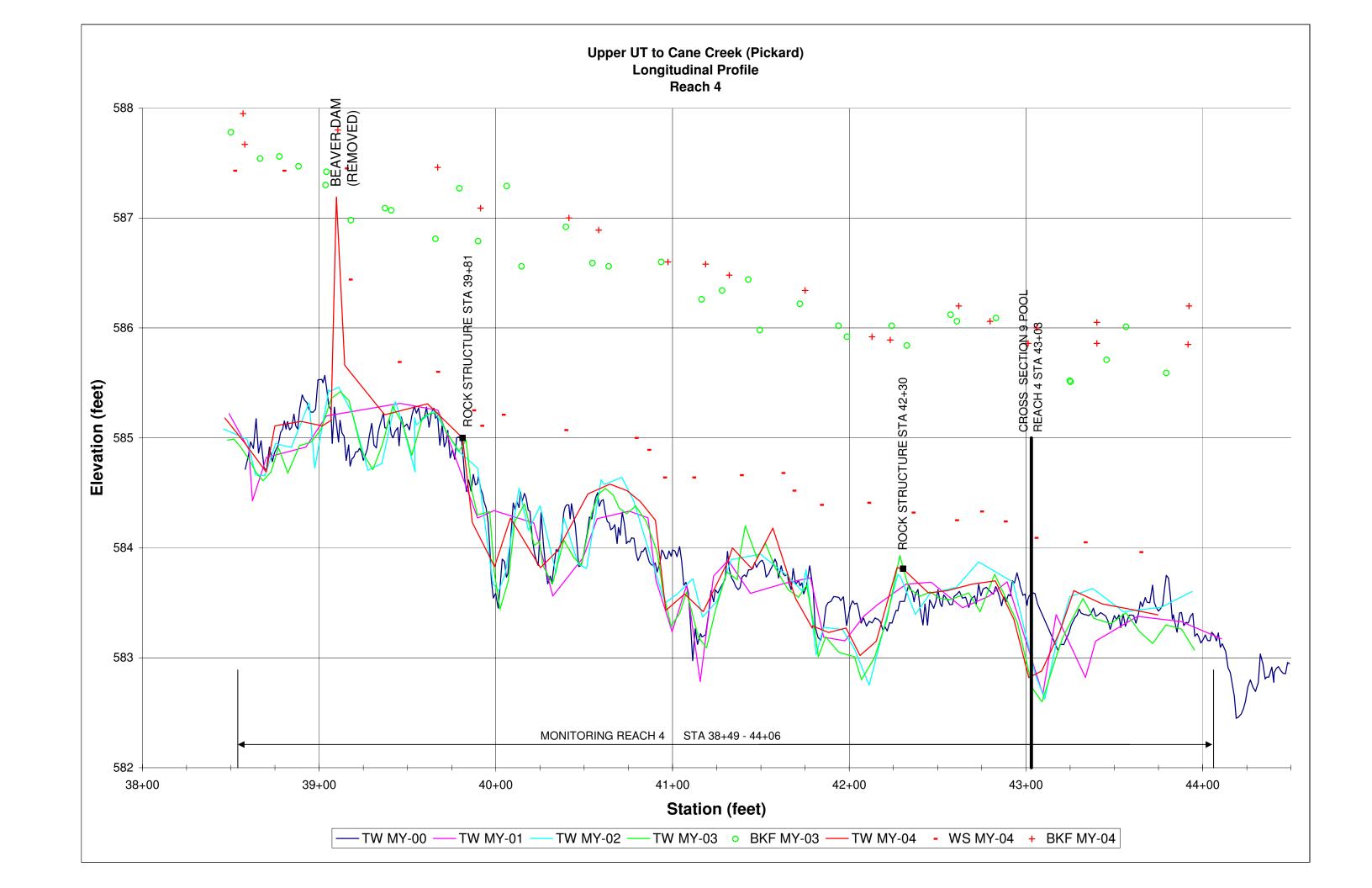
Project:

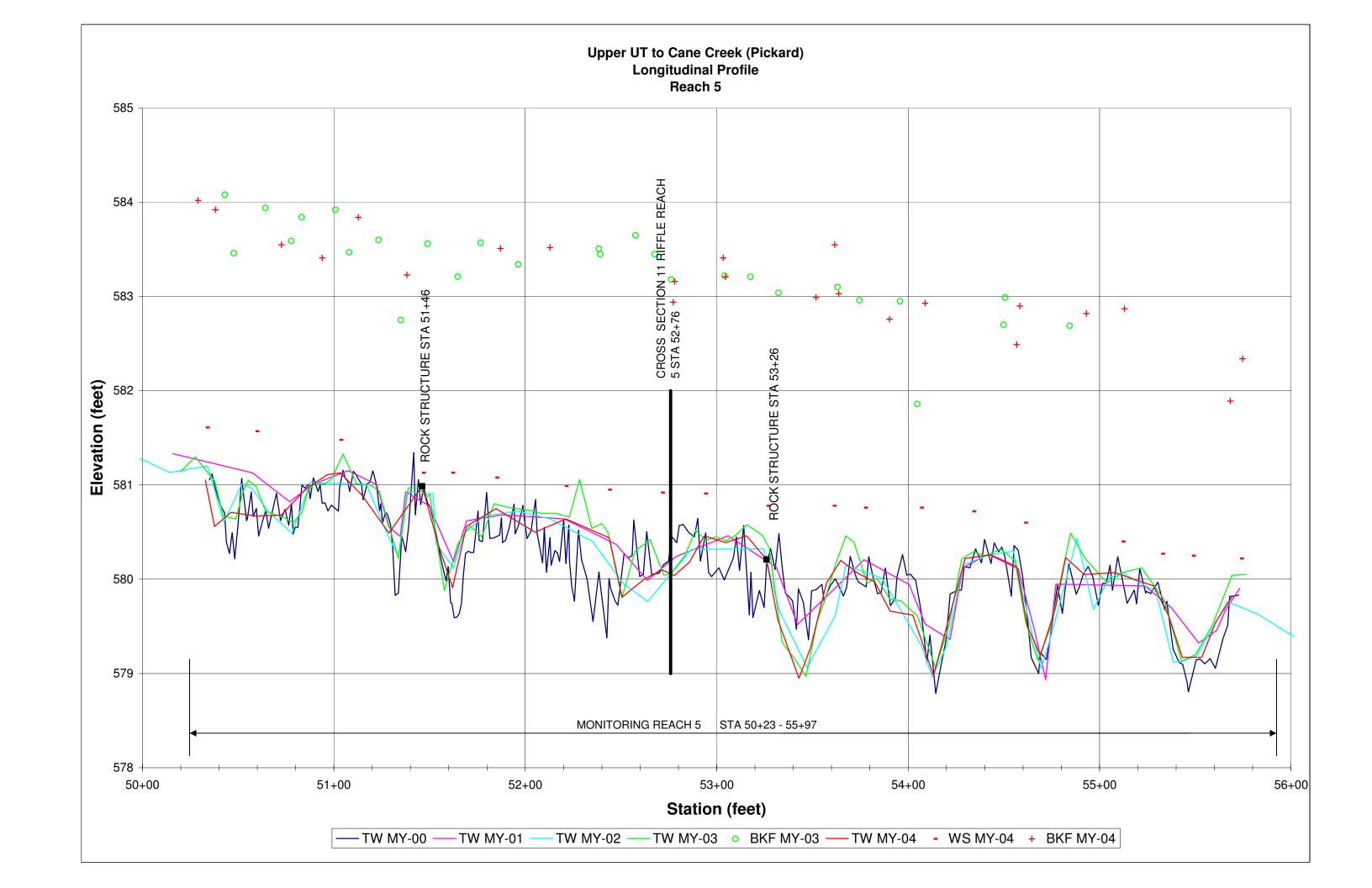

UT to Cane Creek (Pickard)

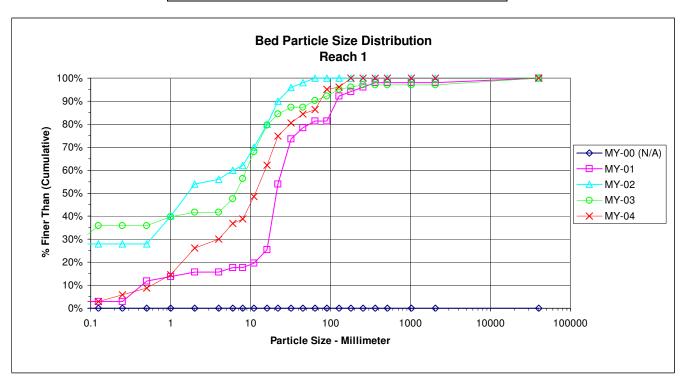


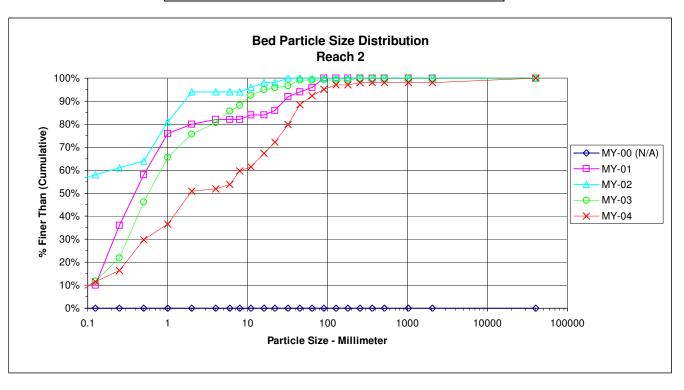



Project: UT to Cane Creek (Pickard) Summary (bankfull)											
	41			ckaru)	-	MY1		MY3	MY4	LANCE.	1
Cross Sec	cuon:	Cross Secti	ion 12		A (DICE)		MY2			MY5	1
Feature		Riffle			A (BKF)	22.9	21.1	22.3	23.1	1	1
Station:		56+11 Dow	nstream of	Reach 5	W (BKF)	14.5	12.4	15.5	15.6	1	1
Date:		3/13/12			Max d	2.6	2.6	2.3	2.4	1	1
Crew:		SV, ZP			Mean d	1.6	1.7	1.4	1.5		
	BB/04 000	•		111/00 CC	W/D	9.2	7.3	10.7	10.5	BB/04 05:	<u> </u>
	MY01-200			MY02-201	-		MY03-201		a	MY04-201	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation		Station	Elevation	Notes
0.00	582.38		0.00	582.38		0.60	582.38	LPIN	0.00	582.41	LPIN
5.50	582.39		8.10	582.64		2.92	582.45		3.55	582.50	
9.40	582.64		11.60	582.69		6.14	582.59		8.80	582.56	
12.30	582.65		12.60	582.70	N. D. 14 "	10.02	582.62	DANIECT	13.08	582.70	TOBL
12.60	582.55		13.10	582.41	3L Bankfull	12.40	582.62	BANKFULL		581.85	3ankfull Let
13.00	582.24	3L Bankfull	14.30	581.57		13.95	581.90		16.20	580.63	
13.80	581.79		15.40	581.05		15.73	580.98		17.57	580.25	
14.30	581.44		16.50	580.60		17.01	580.38		19.54	580.06	
15.20	580.88		17.20	580.23	TOE L	17.36	580.19		20.87	579.72	
15.90	580.56		18.10	580.13		18.95	580.23		22.10	579.49	TW
16.70	580.12	TOE L	19.70	579.89		19.23	579.99		24.07	579.61	
17.60	579.95		20.50	579.83		20.53	579.71	TOE L	25.12	579.89	TOE R
18.80	579.94		21.70	579.67		22.23	579.56	TW	27.25	581.07	
20.40	579.67		22.60	579.75		23.38	579.63		29.44	581.83	
22.10	579.67	TW	23.40	579.65		24.77	579.78	TOE R	31.48	582.20	R Bankfull I
23.70	579.67		24.20	579.64	TW	24.87	580.42		33.98	582.45	
24.60	579.81	TOE R	25.00	580.17		26.47	580.71		38.03	582.32	
25.20	580.17		26.30	580.69		28.21	581.48		40.87	582.50	RPIN
26.10	580.56		27.60	581.08		30.12	582.15	TOBR			
27.40	581.00		28.90	581.60		31.31	582.27				
28.50	581.50		29.60	582.00		33.99	582.40				
29.70	581.90		30.70	582.30	R Bankfull I	36.78	582.30				
31.40	582.20	R Bankfull I	33.50	582.50		41.10	582.52	RPIN			
32.80	582.40		36.30	582.40							
35.80	582.40		40.50	582.60							
38.20	582.40										
40.80	582 40										

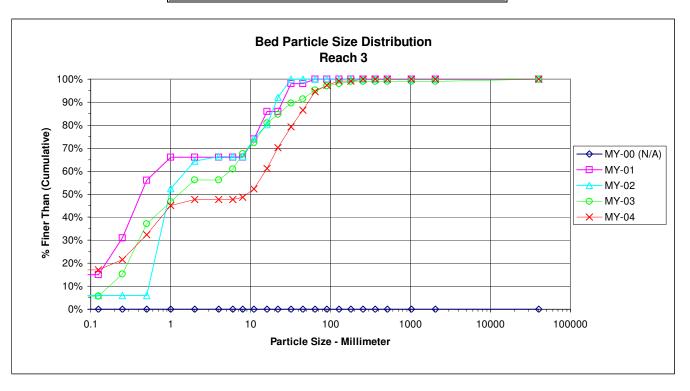




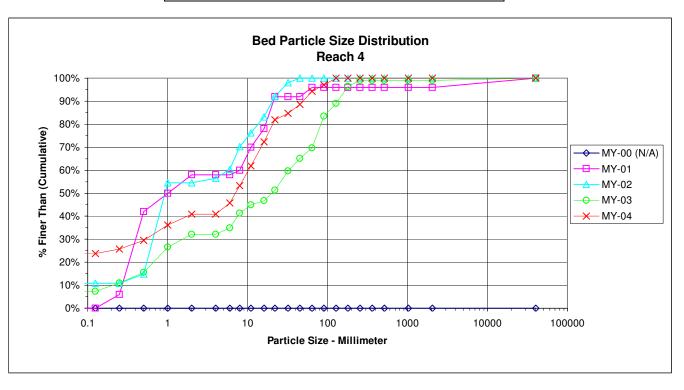



			PEBBLE C	COUNT				
Project:	Upper UT to C	ane Creek (P	ickard)			Date:	8/28/2012	2
Location:	Reach 1							
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	3	0	3	3%	3%
	Very Fine	.062125	S	0	0	0	0%	3%
	Fine	.12525	Α	3	0	3	3%	6%
	Medium	.2550	N	2	1	3	3%	9%
	Coarse	.50 - 1.0	:::::D:::::	5	1	6	6%	15%
.0408	Very Coarse	1.0 - 2.0	S	6	6	12	12%	26%
.0816	Very Fine	2.0 - 4.0		0	4	4	4%	30%
.1622	Fine	4.0 - 5.7	G	1	6	7	7%	37%
.2231	Fine	5.7 - 8.0	R	1	1	2	2%	39%
.3144	Medium	8.0 - 11.3	:::::A:::::	4	6	10	10%	49%
.4463	Medium	11.3 - 16.0	V	6	8	14	14%	62%
.6389	Coarse	16.0 - 22.6	::::E::::	9	4	13	13%	75%
.89 - 1.26	Coarse	22.6 - 32.0	L.	3	3	6	6%	81%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	1	3	4	4%	84%
1.77 - 2.5	Very Coarse	45.0 - 64.0		0	2	2	2%	86%
2.5 - 3.5	Small	64 - 90	:::::C:::::	6	3	9	9%	95%
3.5 - 5.0	Small	90 - 128	0	1	0	1	1%	96%
5.0 - 7.1	Large	128 - 180	:::::B:::::	2	2	4	4%	100%
7.1 - 10.1	Large	180 - 256	<u> </u>	0	0	0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	100%
14.3 - 20	Small	362 - 512	L	0	0	0	0%	100%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%
	Bedrock		BDRK	0	0	0	0%	100%
			Totals	53	50	103	100%	100%

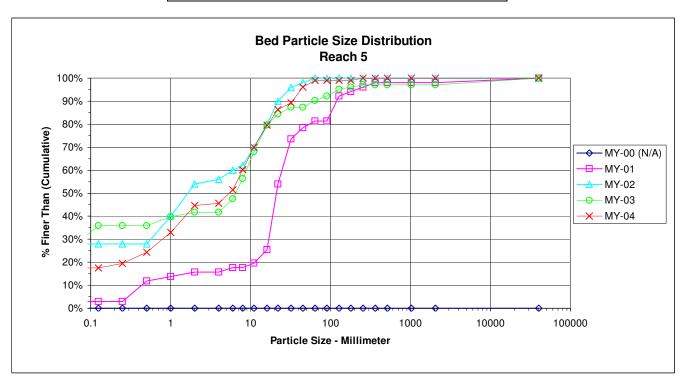
d16	d35	d50	d84	d95
1.1	5.4	11.5	43.4	89.6


			PEBBLE C	COUNT				
Project:	Upper UT to C	Cane Creek (P	ickard)			Date:	8/28/2012	2
Location:	Reach 2							
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	0	5	5	5%	5%
	Very Fine	.062125	S	2	5	7	7%	12%
	Fine	.12525	A	0	5	5	5%	16%
	Medium	.2550	N	8	6	14	13%	30%
	Coarse	.50 - 1.0	D	2	5	7	7%	37%
.0408	Very Coarse	1.0 - 2.0	S	10	5	15	14%	51%
.0816	Very Fine	2.0 - 4.0		1	0	1	1%	52%
.1622	Fine	4.0 - 5.7	G	2	0	2	2%	54%
.2231	Fine	5.7 - 8.0	::::R	4	2	6	6%	60%
.3144	Medium	8.0 - 11.3	Α	0	2	2	2%	62%
.4463	Medium	11.3 - 16.0	ν	5	1	6	6%	67%
.6389	Coarse	16.0 - 22.6	:::::E:::::	2	3	5	5%	72%
.89 - 1.26	Coarse	22.6 - 32.0	L	5	3	8	8%	80%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S ···	6	3	9	9%	88%
1.77 - 2.5	Very Coarse	45.0 - 64.0		2	2	4	4%	92%
2.5 - 3.5	Small	64 - 90	::::::C:::::	0	3	3	3%	95%
3.5 - 5.0	Small	90 - 128	O	2	0	2	2%	97%
5.0 - 7.1	Large	128 - 180	::::::B:::::	0	0	0	0%	97%
7.1 - 10.1	Large	180 - 256	Ŀ	1	0	1	1%	98%
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	98%
14.3 - 20	Small	362 - 512	LL	0	0	0	0%	98%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	98%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	98%
	Bedrock		BDRK	2	0	2	2%	100%
			Totals	54	50	104	100%	100%

d16	d35	d50	d84	d95
0.2	0.9	1.9	38.3	88.3


			PEBBLE C	COUNT				
Project:	Upper UT to C	Cane Creek (P	ickard)			Date:	8/28/2012	2
Location:	Reach 3							
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	11	8	19	17%	17%
	Very Fine	.062125	S	0	0	0	0%	17%
	Fine	.12525	A	4	1	5	5%	22%
	Medium	.2550	N	3	9	12	11%	32%
	Coarse	.50 - 1.0	D	8	6	14	13%	45%
.0408	Very Coarse	1.0 - 2.0	S	2	1	3	3%	48%
.0816	Very Fine	2.0 - 4.0		0	0	0	0%	48%
.1622	Fine	4.0 - 5.7	G	0	0	0	0%	48%
.2231	Fine	5.7 - 8.0	R	0	1	1	1%	49%
.3144	Medium	8.0 - 11.3	Α	2	2	4	4%	52%
.4463	Medium	11.3 - 16.0	Α	3	7	10	9%	61%
.6389	Coarse	16.0 - 22.6	:::::E:::::	3	7	10	9%	70%
.89 - 1.26	Coarse	22.6 - 32.0	L	5	5	10	9%	79%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S ···	4	4	8	7%	86%
1.77 - 2.5	Very Coarse	45.0 - 64.0		5	4	9	8%	95%
2.5 - 3.5	Small	64 - 90	::::::C:::::	1	2	3	3%	97%
3.5 - 5.0	Small	90 - 128	O	1	1	2	2%	99%
5.0 - 7.1	Large	128 - 180	::::::B:::::	0	0	0	0%	99%
7.1 - 10.1	Large	180 - 256	Ŀ	1	0	1	1%	100%
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	100%
14.3 - 20	Small	362 - 512	<u>L</u>	0	0	0	0%	100%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%
	Bedrock		BDRK	0	0	0	0%	100%
			Totals	53	58	111	100%	100%

d16	d35	d50	d84	d95
0.1	0.6	9.1	40.5	67.9


			PEBBLE C	OUNT				
Project:	Upper UT to C	ane Creek (P	ickard)			Date:	8/28/2012	2
Location:	Reach 4							
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	7	18	25	24%	24%
	Very Fine	.062125	S	0	0	0	0%	24%
	Fine	.12525	Α	0	2	2	2%	26%
	Medium	.2550	N	1	3	4	4%	30%
	Coarse	.50 - 1.0	D	7	0	7	7%	36%
.0408	Very Coarse	1.0 - 2.0	S	5	0	5	5%	41%
.0816	Very Fine	2.0 - 4.0		0	0	0	0%	41%
.1622	Fine	4.0 - 5.7	G	0	5	5	5%	46%
.2231	Fine	5.7 - 8.0	R	3	5	8	8%	53%
.3144	Medium	8.0 - 11.3	:::::A:::::	2	7	9	9%	62%
.4463	Medium	11.3 - 16.0	V	6	5	11	10%	72%
.6389	Coarse	16.0 - 22.6	::::E::::	5	5	10	10%	82%
.89 - 1.26	Coarse	22.6 - 32.0	L.	3	0	3	3%	85%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	2	2	4	4%	89%
1.77 - 2.5	Very Coarse	45.0 - 64.0		5	1	6	6%	94%
2.5 - 3.5	Small	64 - 90	:::::C:::::	3	0	3	3%	97%
3.5 - 5.0	Small	90 - 128	0	2	1	3	3%	100%
5.0 - 7.1	Large	128 - 180	:::::В:::::	0	0	0	0%	100%
7.1 - 10.1	Large	180 - 256	<u> </u>	0	0	0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	100%
14.3 - 20	Small	362 - 512	L. L.	0	0	0	0%	100%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%
	Bedrock		BDRK	0	0	0	0%	100%
			Totals	51	54	105	100%	100%

d16	d35	d50	d84	d95
0.1	0.9	7.1	29.3	70.5

			PEBBLE C	COUNT				
Project:	Upper UT to C	ane Creek (P	ickard)			Date:	8/28/2012	2
Location:	Reach 5							
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	5	13	18	17%	17%
	Very Fine	.062125	S	0	0	0	0%	17%
	Fine	.12525	Α	0	2	2	2%	19%
	Medium	.2550	N	1	4	5	5%	24%
	Coarse	.50 - 1.0	D	5	4	9	9%	33%
.0408	Very Coarse	1.0 - 2.0	S	10	2	12	12%	45%
.0816	Very Fine	2.0 - 4.0		0	1	1	1%	46%
.1622	Fine	4.0 - 5.7	G	5	1	6	6%	51%
.2231	Fine	5.7 - 8.0	····R····	4	5	9	9%	60%
.3144	Medium	8.0 - 11.3	Α	5	5	10	10%	70%
.4463	Medium	11.3 - 16.0	ν	1	9	10	10%	80%
.6389	Coarse	16.0 - 22.6	::::E::::	0	7	7	7%	86%
.89 - 1.26	Coarse	22.6 - 32.0	L	2	1	3	3%	89%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	1	6	7	7%	96%
1.77 - 2.5	Very Coarse	45.0 - 64.0		2	1	3	3%	99%
2.5 - 3.5	Small	64 - 90	::::::C:::::	0	0	0	0%	99%
3.5 - 5.0	Small	90 - 128	0	0	0	0	0%	99%
5.0 - 7.1	Large	128 - 180	:::::B:::::	0	0	0	0%	99%
7.1 - 10.1	Large	180 - 256	<u>L</u>	0	1	1	1%	100%
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	100%
14.3 - 20	Small	362 - 512	L	0	0	0	0%	100%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%
	Bedrock		BDRK	0	0	0	0%	100%
			Totals	41	62	103	100%	100%

d16	d35	d50	d84	d95
0.1	1.2	5.5	19.9	42.9

							Table	10a.	Baselir	e Stre	am Da	ta Sum	nmary												
					Upp		to Can			ard) / I	EEP# (395 - R	each:	1 (641	feet)										
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existing	g Cond	ition			Refere	ence Re	each(es) Data			Design			Мо	nitorin	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)						11.6						11.1					10				12.4			
Floodprone Width (ft))						65						102.5					65				150			
Bankfull Mean Depth (ft)						1.2328						1.1873					1.1				0.7258			
¹ Bankfull Max Depth (ft)						1.6						1.85					1.5				1.6			
Bankfull Cross Sectional Area (ft ²))						14.3						13.15					11				9			
Width/Depth Ratio)						9.4098						9.9445					9.0909				17.084			
Entrenchment Ratio)						5.6034						9.237					6.5				12.097			
¹ Bank Height Ratio							1.2						1.2					1				1			
Profile																									
Riffle Length (ft))																			5		17	66		
Riffle Slope (ft/ft))						0.008						0.0073					0.0065		0.0014		0.0066	0.0212		
Pool Length (ft))																			12		20	33		
Pool Max depth (ft)																								
Pool Spacing (ft))				100			240			15			87			13		66	39		70	113		
Pattern																									
Channel Beltwidth (ft))				20			50			15			50			35		70	24		64	64		
Radius of Curvature (ft))				40			385			8.6			25.6			23		42	16		68	68		
Rc:Bankfull width (ft/ft))																								
Meander Wavelength (ft))				80			460			29			57			40		140	74		198	198		
Meander Width Ratio					1.7			4.3			1.3			4.5			3.5		7	6		16	16		
Transport parameters																									
Reach Shear Stress (competency) lb/f	2																								
Max part size (mm) mobilized at bankful	I																								
Stream Power (transport capacity) W/m2	2																								
Additional Reach Parameters																									
Rosgen Classification	n						Degrad	ded E4					Е	4				E4				С	4		
Bankfull Velocity (fps))																								
Bankfull Discharge (cfs))																								
Valley length (ft)						13	75																	
Channel Thalweg length (ft)						14	-30										1737				18	11		
Sinuosity (ft))						1.0	04					1.3	24				1.26				1.3	31		
Water Surface Slope (Channel) (ft/ft))						0.0						0.0					0.0043				0.0			
BF slope (ft/ft))																								
³ Bankfull Floodplain Area (acres)																								
⁴ % of Reach with Eroding Banks	8																								
Channel Stability or Habitat Metric	;																								
Biological or Other	r																								
haded cells indicate that these will typically not be filled in																									

Shaded cells indicate that these will typically not be filled in.

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

							Table	10a. l	Baselir	ne Stre	am Da	ta Sum	nmary												
		1			Upp		to Can			ard) /	EEP# (-									
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existing	g Cond	tion			Refere	ence Re	each(es) Data			Design			Мо	nitoring	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)						13.8						11					12.5				8.6			
Floodprone Width (ft))						150						105					102.5				150			
Bankfull Mean Depth (ft)						1.9855						1.4727					1.5935				0.7093			
¹ Bankfull Max Depth (ft)						2.9						2					2.05				1.2			
Bankfull Cross Sectional Area (ft ²)						27.4						16.2					20.1				6.1			
Width/Depth Ratio)						6.9504						7.4691					7.8179				12.125			
Entrenchment Ratio)						10.87						9.5455					8.3442				17.442			
¹ Bank Height Ratio		Regional Curve			1.1						1.4					1.2				1					
Profile																									
Riffle Length (ft))																			6		13	54		
Riffle Slope (ft/ft))						0.0044						0.0112					0.0055		N/A		N/A	N/A		
Pool Length (ft))																			15		22	84		
Pool Max depth (ft)																								
Pool Spacing (ft))				31			295			2			95			19		93	64		82	109		
Pattern																									
Channel Beltwidth (ft))				20			40			50			77			49	98		33		44	61		
Radius of Curvature (ft))				22			70			11.3			27.1			32	58		19		36	45		
Rc:Bankfull width (ft/ft))																								
Meander Wavelength (ft))				80			540			29			96			56	140		122		144	159		
Meander Width Ratio				1.4			2.9			4.5			7			3.5	7		14		17	19			
Transport parameters																									
Reach Shear Stress (competency) lb/f	2																								
Max part size (mm) mobilized at bankful	I																								
Stream Power (transport capacity) W/m2	2																								
Additional Reach Parameters																									
Rosgen Classification	1						Degrad	ded E4					Е	4				E4				E/	C5		
Bankfull Velocity (fps))																								
Bankfull Discharge (cfs))																								
Valley length (ft))						19	86																	
Channel Thalweg length (ft))						20	65										1322				13	57		
Sinuosity (ft))						1.0	04					1.0	62				1.26				1.3	21		
Water Surface Slope (Channel) (ft/ft))						0.0	044					0.0	800				0.0037							
BF slope (ft/ft))																								
³ Bankfull Floodplain Area (acres)																								
⁴% of Reach with Eroding Banks	8																								
Channel Stability or Habitat Metric	;																								
Biological or Other	r																								

Shaded cells indicate that these will typically not be filled in.

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

												ıta Sum													
					Upp	er UT	to Can	e Cree	k (Pick	ard) /	EEP# 3	395 - R	leach:	3 (531	feet)										
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existin	g Cond	ition			Refere	ence Re	each(es) Data			Design			Мо	nitorin	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft))						16						11.1					16		15.2		17.8	18.3		
Floodprone Width (ft))						300						102.5					200		150		150	150		
Bankfull Mean Depth (ft))						2.1375						1.1873					2		1.2472		1.3333	1.7303		
¹ Bankfull Max Depth (ft)						3.3						1.85					2.4		2		2.3	2.5		
Bankfull Cross Sectional Area (ft ²))						34.2						13.15					32		22.2		24.4	26.3		
Width/Depth Ratio)						7.4854						9.9445					8		8.7848		13.725	14.272		
Entrenchment Ratio)						18.75						9.237					12.5		8.1967		8.427	9.8684		
¹ Bank Height Ratio							1.3						1.2					1		1		1	1		
Profile																									
Riffle Length (ft))																			5		33	136		
Riffle Slope (ft/ft))						0.007						0.0073					0.0049		0		0.0033	0.0108		
Pool Length (ft))																			10		31	54		
Pool Max depth (ft))																								
Pool Spacing (ft))						395			15			87			21		106	58		113	180			
Pattern																									
Channel Beltwidth (ft)				18			148			15			50			56		112	15		63	100		
Radius of Curvature (ft)				23			32			8.6			25.6			37		66	23		45	72		
Rc:Bankfull width (ft/ft))																								
Meander Wavelength (ft)				120			340			29			57			64		160	105		182	274		
Meander Width Ratio					1.1			9.2			1.3			4.5			3.5		7	5.9		10.2	15.4		
Transport parameters																									
Reach Shear Stress (competency) lb/f	2																								
Max part size (mm) mobilized at bankful	ı																								
Stream Power (transport capacity) W/m2	2																								
Additional Reach Parameters																									
Rosgen Classification	1				Г		Degra	ded E4					Е	4				E4				E/	2/5		
Bankfull Velocity (fps)			I	I			, y. a.																		
Bankfull Discharge (cfs)																								
Valley length (ft							15	41																	
Channel Thalweg length (ft								165										1984				21	19		
Sinuosity (ft)								34					1.	24				1.27				1.			
Water Surface Slope (Channel) (ft/ft)							0.0							046				0.0032				0.0			
BF slope (ft/ft)														-											
³ Bankfull Floodplain Area (acres)																								
⁴ % of Reach with Eroding Banks	3																								
Channel Stability or Habitat Metric																									
Biological or Other	r																								

Shaded cells indicate that these will typically not be filled in.

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

												ıta Sum													
					Upp	er UT	to Can	e Cree	k (Pick	ard) /	EEP# (395 - R	leach:	4 (570	feet)										
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existin	g Cond	ition			Refere	ence Re	each(es) Data			Design			Мс	nitorin	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)						16						11.1					16		15.2		17.8	18.3		
Floodprone Width (ft)						300						102.5					200		150		150	150		
Bankfull Mean Depth (ft)						2.1375						1.1873					2		1.2472		1.3333	1.7303		
¹ Bankfull Max Depth (ft)						3.3						1.85					2.4		2		2.3	2.5		
Bankfull Cross Sectional Area (ft ²)						34.2						13.15					32		22.2		24.4	26.3		
Width/Depth Ratio	o o						7.4854						9.9445					8		8.7848		13.725	14.272		
Entrenchment Ratio	o						18.75						9.237					12.5		8.1967		8.427	9.8684		
¹ Bank Height Ratio	o						1.3						1.2					1		1		1	1		
Profile																									
Riffle Length (ft)																			5		33	136		
Riffle Slope (ft/ft)						0.007						0.0073					0.0049		0		0.0033	0.0108		
Pool Length (ft)																			10		31	54		
Pool Max depth (ft)																								
Pool Spacing (ft)				29			395			15			87			21		106	58		113	180		
Pattern				•		•														•					•
Channel Beltwidth (ft)				18		I	148			15			50			56		112	15		63	100		
Radius of Curvature (ft)				23			32			8.6			25.6			37		66	23		45	72		
Rc:Bankfull width (ft/ft)																								
Meander Wavelength (ft)				120			340			29			57			64		160	105		182	274		
Meander Width Ratio					1.1			9.2			1.3			4.5			3.5		7	5.9		10.2	15.4		
Transport parameters																									
Reach Shear Stress (competency) lb/f	2																								
Max part size (mm) mobilized at bankful																									
Stream Power (transport capacity) W/m	2																								
Additional Reach Parameters																									
Rosgen Classification	1 1				Π		Degra	ded E4					F	4				E4				F/	C/5		
Bankfull Velocity (fps)						Dogia																		
Bankfull Discharge (cfs)																								
Valley length (ft)						15	41																	
Channel Thalweg length (ft)							65										1984				21	19		
Sinuosity (ft)							34					1	24				1.27					27		
Water Surface Slope (Channel) (ft/ft)						0.0							046				0.0032				0.0			
BF slope (ft/ft)						0.0						0.0	0				3.0002				3.0			
³ Bankfull Floodplain Area (acres)																								
⁴ % of Reach with Eroding Banks	s e																								
Channel Stability or Habitat Metric																									
Biological or Othe																									
Diological of Othe																									

Shaded cells indicate that these will typically not be filled in.

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

												ta Sum													
					Upp	er UT	to Can	e Cree	k (Pick	ard) / l	EEP# (395 - R	leach:	5 (634	feet)		_								
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existin	g Cond	ition			Refere	ence Re	each(es) Data			Design			Мо	nitorin	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft	,						20.3						11.1					18		14.5		15.9	20.6		
Floodprone Width (ft	()						300						102.5					300		150		150	150		
Bankfull Mean Depth (ft	()						2.1133						1.1873					2.1111		1.1893		1.5793	1.6164		
¹ Bankfull Max Depth (ft	:)						2.9						1.85					2.7		2		2.4	2.6		
Bankfull Cross Sectional Area (ft ²	·)						42.9						13.15					38		22.9		24.5	25.7		
Width/Depth Ratio	0						9.6058						9.9445					8.5263		9.1812		9.837	17.321		
Entrenchment Ratio	0						14.778						9.237					16.667		7.2816		9.434	10.345		
¹ Bank Height Ratio	0						1.6						1.2					1		1		1	1		
Profile																									
Riffle Length (ft)																			12		33	78		
Riffle Slope (ft/ft	()												0.0112							0		0.0036	0.0238		
Pool Length (ft)																			15		28	54		
Pool Max depth (ft	()																								
Pool Spacing (ft	()										2			95						58		83	201		
Pattern																									
Channel Beltwidth (ft	()				23			91			50			77			63		126	34		82	104		
Radius of Curvature (ft	()				19			34			11.3			27.1			41		75	33		54	90		
Rc:Bankfull width (ft/ft	()																								
Meander Wavelength (ft	()				99			150			29			96			72		180	124		156	303		
Meander Width Ratio	С				1.1			4.5			4.5			7			3.5		7	7.8		9.8	19.1		
Transport parameters																									
Reach Shear Stress (competency) lb/f	2																								
Max part size (mm) mobilized at bankful																									
Stream Power (transport capacity) W/m	2																								
Additional Reach Parameters																									
Rosgen Classification	n						Degrad	ded E4					Е	4				E4				E/	C4		
Bankfull Velocity (fps)																								
Bankfull Discharge (cfs)																								
Valley length (ft)						11	12																	
Channel Thalweg length (ft)						14	35										1174				11	94		
Sinuosity (ft)						1.3	29					1.	62				1.09				1.	24		
Water Surface Slope (Channel) (ft/ft)						0.0						0.0					0.0041				0.0	023		
BF slope (ft/ft)																								
³ Bankfull Floodplain Area (acres)																								
⁴% of Reach with Eroding Bank	s																								
Channel Stability or Habitat Metric																									
Biological or Othe	r																								
Shaded cells indicate that these will typically not be filled in.					-						•														

Shaded cells indicate that these will typically not be filled in.

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)

Upper UT to Cane Creek (Pickard) / EEP# 395

Parameter	Pre	-Exis	ting C	ondit	ion		Refe	rence	Reac	h(es)	Data		[Desigr	1			As-bu	ilt/Bas	seline	
¹ Ri% / Ru% / P% / G% / S%																					
¹ SC% / Sa% / G% / C% / B% / Be%																					
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)																					
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																					
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																					

Shaded cells indicate that these will typically not be filled in.

- 1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
- 2 = Entrenchment Class Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates
- 3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary. The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions. ER and BHR have been addressed in prior submissions as a substantle parameter should be design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-construction distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should detal from both the cross-sections surveys and the incorporation surveys and the incorporation surveys and the formation of the providing profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Data for Table 10b. Baseline Stream Summary Table is not available (Reaches 1-5)

	Table	e 11a.	Mon	itorin	g Dat								• •			Parar	neters	s – Cr	oss S	Sectio	ns)							
	•						Uppe	r UT			eek (F			EP# 3	395													
		(Cross S	ection	1 (Poo	I)			С	ross S	ection	2 (Riffle	9)				Cross S	ection	3 (Poo	I)			С	ross S	ection	4 (Riffle	e)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used		598.5	598.4	598.5	598.5				596	596	596	596				591.5	591.8	591.5	591.5				594	594.4	594	594		
Bankfull Width (ft)		8.1	7.8	7.467	6.551				12.4	9.7	10.78	10.92				8.2	8.2	6.56	5.982				8.6	9.8	8.591	8.363		
Floodprone Width (ft)		-	-	-	-				150	150	150	150				-	-	-	-				150	150	150	150		
Bankfull Mean Depth (ft)		1.111	1.1	1.26	1.249				0.75	0.9	0.752	0.848				0.744	0.8	0.627	0.662				0.709	0.9	0.759	0.803		
Bankfull Max Depth (ft)		1.7	1.8	1.71	1.61				1.6	1.7	1.49	1.6				1.1	1.4	0.94	1.01				1.2	1.6	1.39	1.38		
Bankfull Cross Sectional Area (ft²)		9	8.8	9.409	8.183				9.3	9.7	8.107	9.255				6.1	6.9	4.114	3.962				6.1	8.8	6.525	6.715		
Bankfull Width/Depth Ratio		-	-	-	-				16.53	11.1	14.34	12.88				-	-	-	-				12.12	11	11.31	10.42		
Bankfull Entrenchment Ratio		-	-	-	-				12.1	15.4	13.91	13.74				-	-	-	-				17.44	15.2	17.46	17.94		
Bankfull Bank Height Ratio		-	-	-	-				1	1	0.913	1.063				-	-	-	-				1	1	1.201	0.964		
Cross Sectional Area between end pins (ft2)		-	-	25.62	23.24				-	-	11.1	12.42				-	-	18.75	17.82				-	-	20.96	20.34		
d50 (mm)		22	1.9	7.667	-				19.9	1.2	13.5	-				0.5	0.4	0.458	-				0.4	-	12.67	-		
		(Cross S	ection	5 (Poo	I)			С	ross S	ection	6 (Riffle	e)			C	ross S	ection	7 (Riffle	e)			С	ross S	ection	8 (Riffle	e)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used		592.1	592.2	592.1	592.1				588.8	588.8	588.8	588.8				589.1	588.9	589.1	589.1				587	586.9	587	587		
Bankfull Width (ft)		10.8	10.4	10.05	10.49				17.8	17.8	17.76	18.02				15.2	14.5	17.49	16.29				18.3	17.6	17.99	18.53		
Floodprone Width (ft)		-	-	-					150	150	150	150				150	150	150	150				150	150	150	150		
Bankfull Mean Depth (ft)		1.028	1.1	1.065	1.036				1.247	1.2	1.229	1.252				1.73	1.7	1.646	1.756				1.333	1.3	1.437	1.354		
Bankfull Max Depth (ft)		1.9	1.9	1.82	1.86				2	2	1.87	1.86				2.5	2.2	2.61	2.56				2.3	2.2	2.46	2.34		
Bankfull Cross Sectional Area (ft ²)		11.1	11.1	10.71	10.87				22.2	22.1	21.83	22.55				26.3	22.4	28.79	28.6				24.4	23.7	25.84	25.09		
Bankfull Width/Depth Ratio		-	-	-	-				14.27	14.3	14.45	14.39				8.785	9.4	10.63	9.278				13.73	13.1	12.52	13.69		
Bankfull Entrenchment Ratio		-	-	-	-				8.427	8.4	8.445	8.326				9.868	10.3	8.575	9.208				8.197	8.5	8.339	8.094		
Bankfull Bank Height Ratio		-	-	-	-				1	1	1.294	1.204				1	1	0.943	0.945				1	1	1.13	1.068		
Cross Sectional Area between end pins (ft ²)		-	-	12.4	12.95				-	-	67.28	68.81				-	-	29.78	29.09				-	-	33.55	32.6		
d50 (mm)		0.2	0.8	6.333	-				11.3	1.5	1.313	-				11.3	1.5	9.25	-				10.6	0.9	11.83	-		
			Cross S	ection	9 (Poo	l)	•		C	ross S	ection 1	0 (Riff	e)			С	ross Se	ection 1	1 (Riffl	le)			С	ross Se	ection	12 (Riffl	le)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used		585.8	585.8	585.8	585.8				584.2	584.2	584.2	584.2				582.6	582.7	582.6	582.6				582.2	582.2	582.2	582.2		
Bankfull Width (ft)		16.8	17.7	16.8	17.79				20.6	21.1	20.13	21.46				15.9	17	14.32	15.44				14.5	12.4	15.46	15.55		
Floodprone Width (ft)		-	-	-	-				150	150	150	150				150	150	150	150				150	150	150	150		
Bankfull Mean Depth (ft)		1.69	1.6	1.692	1.652				1.189	1.2	1.176	1.146				1.616	15	1.429	1.488				1.579	1.7	1.444	1.483		
Bankfull Max Depth (ft)		3.2	3.1	3.27	3.11				2	2	2.1	2.07				2.4	2.5	2.56	2.59				2.6	2.6	2.34	2.41		
Bankfull Cross Sectional Area (ft²)		28.4	28.5	28.43	29.38				24.5	24.9	23.68	24.59				25.7	25.8	20.46	22.97				22.9	21.1	22.32	23.07		
Bankfull Width/Depth Ratio		-	-	-	-				17.32	17.9	17.11	18.73				9.837	11.2	10.02	10.38				9.181	7.3	10.7	10.48		
Bankfull Entrenchment Ratio		-	-	-	-				7.282	7.1	7.451	6.989				9.434	8.8	10.47	9.716				10.34	12.1	9.704	9.646		
Bankfull Bank Height Ratio		-	-	-	-				1	1	0.924	0.961				1	1	-226.6	1.12				1	1	1.107	1.124		
Cross Sectional Area between end pins (ft²)		-	-	31.3	32.31				-	-	41.94	40.78				-	-	34.82	37.66				-	-	34.34	35.03		
d50 (mm)		0.4	0.9	13.5	-				20.3	6	7.25	-				20.3	6	14.75	-				20.3	6	13.5	-		

^{1 =} Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

																				trean EP# 3																
Parameter			Bas	eline					М	Y-1					М	Y-2					M	/- 3					M	Y- 4					M	Y- 5		
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Mir	Mear	Med	Max	SD ⁴	n
Bankfull Width (ft)			12.4						12.4						9.7						10.78						10.92	2								
Floodprone Width (ft)			150						150						150						150						150									
Bankfull Mean Depth (ft)			0.726	;					0.75						0.9						0.752						0.848									
¹ Bankfull Max Depth (ft)			1.6						1.6						1.7						1.49						1.6									
Bankfull Cross Sectional Area (ft ²)			9						9.3						9.7						8.107						9.255	;								
Width/Depth Ratio			17.08	3					16.53						11.1						14.34						12.88	1								
Entrenchment Ratio			12.1						12.1						15.4						13.91						13.74									
¹ Bank Height Ratio			1						1						1						0.913						1.063									
Profile																																				
Riffle Length (ft)	5	5	17	66			5		17	66			4		19	65			3.88	12.62	10.37	29.11	9.361	11	4.47	15.66	14.42	31.83	10.08	3 7	1					
Riffle Slope (ft/ft)	0.001		0.007	0.021			0.001		0.007	0.012			0		0.009	0.086	6		0.013	0.047	0.023	0.131	0.042	8	0.001	0.074	0.016	0.313	0.122	2 6						
Pool Length (ft)							12		20	33			3		6	23			10.83	37.24	33.84	74.92	21.23	11	19.88	66.39	62.58	126.6	40.36	6						
Pool Max depth (ft)	12	2	20	33															1.98	2.331	2.21	3.21	0.366	11	2.065	2.315	2.118	2.75	0.338	3 6						
Pool Spacing (ft)	39	9	70	113			39		70	113			39		70	113			21.36	48.71	44.15	95.34	21.61	10	22.1	83.86	95.59	129.7	47.8	4 5						
Pattern																																				
Channel Beltwidth (ft)	24		64	64	Т	T	1																													
Radius of Curvature (ft)	16		68	68												Ī.,,																				
Rc:Bankfull width (ft/ft)																Patter	m data v	viii not ty	/pically t	e collec		ss visua shifts fro			nai data	or profi	ile data i	indicate								
Meander Wavelength (ft)	74		198	198																																
Meander Width Ratio	6		16	16																																
Additional Reach Parameters																																				
Rosgen Classification			(C4			Т		C	type					F	type					F1	уре					F	type			_				_	_
Channel Thalweg length (ft)				811						50						42			1			42						642			1					
Sinuosity (ft)				.31						.31						.31			t –			.31						.31								
Water Surface Slope (Channel) (ft/ft)				0066			t			0066						071			l			0744						0712			1					
BF slope (ft/ft)			5.0				t		5.0						5.0				l			0832						0749			1					
³ Ri% / Ru% / P% / G% / S%		I	I						I	I									22%		66%	T			18%	1	64%		T			T		T		
3SC% / Sa% / G% / C% / B% / Be%																	1		27%	15%	48%	7%	0%	3%	3%	23%	60%	14%	0%	0%	1	+	1	1	${f au}$	-
³ d16 / d35 / d50 / d84 / d95 /																			0.09	0.123					1.1		11.5					1	1	1		
² % of Reach with Eroding Banks															•	•	-			•	0	%				•)%			1		•	-		
Channel Stability or Habitat Metric							1																								1					
Biological or Other							1												1												1					

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

3 = Riffle, Run, Pool, Gilde, Step; SilfClay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

4. = Of value/needed only if the n exceeds 3

																						tream EP# 3																	
Parameter			Bas	seline						М	Y-1					ı	MY-2	2					M١	/- 3					N	/IY- 4	ı					ı	MY- 5		
Dimension and Substrate - Riffle only	Min	Me	an Med	Max	SI	D⁴ r	1	Min	Mean	Med	Max	SD	f n	Min	Mea	ın Me	d M	Max :	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mea	n Me	d M	lax	SD ⁴	n	Min	Mea	n Me	d Ma	x SE	0 ⁴ n
Bankfull Width (ft)			8.6							8.6						9.8	3						8.591						8.36	3									
Floodprone Width (ft)			150							150						150)						150						150)								L	
Bankfull Mean Depth (ft)			0.709	Э						0.709						0.9)						0.759						0.80										
¹ Bankfull Max Depth (ft)			1.2							1.2						1.6	3						1.39						1.3	В								L	
Bankfull Cross Sectional Area (ft ²)			6.1							6.1						8.8	3						6.525						6.71										
Width/Depth Ratio			12.12							12.12						11							11.31						10.4										
Entrenchment Ratio			17.4	4						17.44						15.	2						17.46						17.9	14									
¹ Bank Height Ratio			1							1						1							1.201						0.96	4									
Profile																																							
Riffle Length (ft)	6	6 13 54 6 13 54												6		10	1	15			19.16	40.18	31.24	86.49	26.62	5	22.7	45.0	2 34.	7 77	.67	28.9	3					Т	
Riffle Slope (ft/ft)	N/A	Ą	N/A	N/A				N/A		N/A	N/A			N/A		N/A	A N	N/A			5E-04	0.009	0.005	0.019	0.009	5	0	0.00	0.00	0.0	015	800.0	3						
Pool Length (ft)								15		22	84			17		20	2	25			15.52	61.65	75.69	119.2	43.79	5	36.94	97.0	9 101	.2 15	3.1	58.21	3						
Pool Max depth (ft)	15	5	22	84																	2.16	2.53	2.48	3.055	0.381	5	1.79	2.26	5 2.21	5 2.	.79 (0.502	3					Т	
Pool Spacing (ft)	64	4	82	109	1			64		82	109			64		82	10	09			60	113.4	117.2	159.3	42.79	4	131	155.3	3 155	.3 17	9.6	34.37	2						
Pattern																																							
Channel Beltwidth (ft)	33	Т	44	61	Т	Т	7																																
Radius of Curvature (ft)	19		36	45																										. ,.	. 1								
Rc:Bankfull width (ft/ft)							7										Pa	attern c	ata wi	not ty	pically b	e collect		ss visuai shifts fro			nai data	or pro	riie data	a indic	ate -								
Meander Wavelength (ft)	122		144	159	1																	9																	
Meander Width Ratio	14		17	19																																			
Additional Reach Parameters																																							
Rosgen Classification			F	/C5			T			C/E	type					F	type						Εt	vne					F	type	,							_	
Channel Thalweg length (ft)				357			T				70						588							88						588									
Sinuosity (ft)				1.21			T				.21						1.21						1.							1.21				1					
Water Surface Slope (Channel) (ft/ft)				N/A			7				I/A			1			N/A							/A						0007	6			t					
BF slope (ft/ft)							T																0.00							0047									
³ Ri% / Ru% / P% / G% / S%		T																			36%		56%				25%		53%		T							T	
3SC% / Sa% / G% / C% / B% / Be%															1	1	\top				5%	71%	23%	1%	0%	0%	5%	46%	419	6 6	%	0%	2%		1	1		\top	
3d16 / d35 / d50 / d84 / d95 /							1								T	1	\top					0.385					0.2	0.9	1.9	3	8.3	88.3			1	1		\top	
² % of Reach with Eroding Banks							7							1	-	•	_					•	0	%	•			•	•	0%				1	-	•	-		
Channel Stability or Habitat Metric							7							1																				t					
Biological or Other							寸							Ī																				1					
Shaded cells indicate that these will typically not be														-																				_					

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

3 = Riffle, Run, Pool, Gilde, Step; SilfClay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

4. = Of value/needed only if the n exceeds 3

																	nitori ek (P																				
Parameter			Bas	eline					M	Y-1					M	Y-2					МΥ	/- 3					M	IY- 4						MY	/- 5		
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Ma	x SE) ⁴	n	Min	Mean	Med	Max	SD ⁴	n
Bankfull Width (ft)	15.2		17.8	18.3					16.5						16.15						17.63						17.15	5									
Floodprone Width (ft)	150		150	150					150						150						150						150										
Bankfull Mean Depth (ft)	1.247		1.333						1.489						1.45						1.437						1.504										
¹ Bankfull Max Depth (ft)	2		2.3	2.5					2.25						2.1						2.24						2.21										
Bankfull Cross Sectional Area (ft ²)	22.2		24.4	26.3					24.25						22.25						25.31						25.57	7									
Width/Depth Ratio	8.785			14.27					11.53						11.85						12.54						11.84	4									
Entrenchment Ratio	8.197		8.427	9.868					9.148						9.35						8.51						8.767	7									
¹ Bank Height Ratio	1		1	1					1						1						1.118						1.075	5									
Profile																																					
Riffle Length (ft)	5	5 33 136 29 96 136													54	144			11.38	33.07	20.6	74.1	26.88	5	49.81	79.53	53.77	7 135	48.0	80	3						
Riffle Slope (ft/ft)	0)	0.003	0.011			8E-04		0.004	0.006			0		0.002	0.007			0.003	0.008	0.008	0.011	0.004	4	0.002	0.007	0.009	9 0.00	0.00	04	3						
Pool Length (ft)							17		37	59			4		20	35			21.25	46.9	49.39	71.31	17.92	5	42.68	50.6	51.93	3 57.1	9 7.3	46	3						
Pool Max depth (ft)	10)	31	54															3	3.38	3.51	3.74	0.341	5	3.51	3.585	3.615	5 3.6	3 0.00	65	3						
Pool Spacing (ft)	58	3	113	180			58		113	180			58		113	180			56.31	83.63	79.47	119.3	30.87	4	104.8	140.2	140.2	2 175.	.5 49.9	99	2						
Pattern																																					
Channel Beltwidth (ft)	15		63	100		T																								T							
Radius of Curvature (ft)	23		45	72																																	
Rc:Bankfull width (ft/ft)																Patter	rn data v	/III not ty	/pically t			ss visuai shifts fro			nai data	or prot	пе аата	indicati	9								
Meander Wavelength (ft)	105		182	274																																	
Meander Width Ratio	5.9		10.2	15.4																																	
Additional Reach Parameters																																					
Rosgen Classification			E/	/C5			Г		C/E	type					C/E	type					C/E	type					C/I	E type									_
Channel Thalweg length (ft)				119						18			t		5				t			31						531									
Sinuosity (ft)				.27						27			l			.27			l		1.							1.27									
Water Surface Slope (Channel) (ft/ft)				031						025			l			027			l		0.0							00406									
BF slope (ft/ft)				-																		0189						00151									
³ Ri% / Ru% / P% / G% / S%																			34%		48%				49%		31%									П	
3SC% / Sa% / G% / C% / B% / Be%					İ									1			1		6%	50%	39%	4%	0%	1%	17%	31%	47%	5%	09	%	0%				\vdash	\neg	
3d16 / d35 / d50 / d84 / d95 /														i -								20.8			0.1	0.6	9.1	40.	5 67.	.9					\Box		
² % of Reach with Eroding Banks													1	•					1	•	0	%					•	0%									
Channel Stability or Habitat Metric													Ī						Ī																		
Biological or Other													i						i																		
Shaded cells indicate that these will typically not be																																					

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

3 = Riffle, Run, Pool, Gilde, Step; SilfClay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

4. = Of value/needed only if the n exceeds 3

																						ch Da Reach														
Parameter			Bas	eline					M	Y-1			ppu.	0		Y-2	J. (.		,,,	" -		/- 3	(0	0.00	٠,		M	Y- 4					M	Y- 5		
Dimension and Substrate - Riffle only	Min	Mear	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mear	Med	Max	SD ⁴	n
Bankfull Width (ft)	15.2		17.8	18.3					18.3						17.6						17.99						18.53									
Floodprone Width (ft)	150		150	150					150						150						150						150									
Bankfull Mean Depth (ft)	1.247		1.333	1.73					1.333						1.3						1.437						1.354									
¹ Bankfull Max Depth (ft)	2		2.3	2.5					2.3						2.2						2.46						2.34									
Bankfull Cross Sectional Area (ft²)	22.2		24.4	26.3					24.4						23.7						25.84						25.09									
Width/Depth Ratio	8.785		13.73	14.27					13.73						13.1						12.52						13.69									
Entrenchment Ratio	8.197		8.427	9.868					8.197						8.5						8.339						8.094									
¹ Bank Height Ratio	1		1	1					1						1						1.13						1.068							Ī		Ī
Profile																																				
Riffle Length (ft)	5		33	136			7		23	97			5		37	47			3.86	23.51	17.32	55.73	20.66	8	16.1	41.14	40.89	66.68	22.65	5 4						
Riffle Slope (ft/ft)	0		0.003	0.011			0		0.003	0.006			0.004		0.006	0.015			0.002	0.012	0.011	0.029	0.009	8	0.002	0.008	0.007	0.017	0.006	6 4						
Pool Length (ft)							10		31	54			7		12	17			11.23	49.71	51.05	78.86	24.78	7	43.57	62.03	55.72	93.09	23.37	4						
Pool Max depth (ft)	10		31	54															2.16	2.934	3.275	3.325	0.488	7	3.18	3.23	3.218	3.305	0.054	4						
Pool Spacing (ft)	58		113	180			58		113	180			58		113	180			21.99	73.49	74.9	117	35.35	6	88.76	92.13	92.15	95.49	3.365	3						
Pattern																																				
Channel Beltwidth (ft)	15		63	100																																
Radius of Curvature (ft)	23		45	72												Ī.,,																				
Rc:Bankfull width (ft/ft)																Patter	n data v	viii not ty	pically b			ss visual shifts fro			iai data	or proti	ie data i	naicate								
Meander Wavelength (ft)	105		182	274																																
Meander Width Ratio	5.9		10.2	15.4																																
Additional Reach Parameters																																				
Rosgen Classification			E	/C5					Ct	ype					C/E	type					C/E	type					C/E	type						_		
Channel Thalweg length (ft)			2	119					5	71					5	70					5	70					5	70								
Sinuosity (ft)			1.	.27					1.	27					1.	27					1.	.27					1	.27								
Water Surface Slope (Channel) (ft/ft)	7														0.0	039					0.00	0278					0.0	0677			İ					
BF slope (ft/ft)																					0.00	0414					0.0	0327			Ĭ					
³ Ri% / Ru% / P% / G% / S%																			34%		63%				30%		45%									
3SC% / Sa% / G% / C% / B% / Be%																			7%	25%	38%	29%	0%	1%	24%	17%	53%	6%	0%	0%	Ĭ					T
³ d16 / d35 / d50 / d84 / d95 /																		0.518	6.043	20.2	93.55	170.6		0.1	0.9	7.1	29.3	70.5								
² % of Reach with Eroding Banks	3																			0	1%					(1%									
Channel Stability or Habitat Metric	;																													Ĺ						
Biological or Other																																				

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

3 = Riffle, Run, Pool, Gilde, Step; SilfClay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

4. = Of value/needed only if the n exceeds 3

	Exhibit Table 11b. Monitoring Data - Stream Reach Data Summary Upper UT to Cane Creek (Pickard) / EEP# 395 - Reach: 5 (634 feet)																																						
Dava-marka-v	Paratter.							<u>'</u>								ek (P	ска	(a) / E	,						, I							T					—		
Parameter	Baseline				MY-1						MY-2							MY- 3						MY- 4							MY- 5								
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mea	an Me	ed N	/lax S	D ⁴	n	Min	Mean	Me	M b	ax	SD ⁴	n	Min	Mea	an M	ed M	ax	SD ⁴	n
Bankfull Width (ft)	14.5		15.9	20.6			14.5	17	15.9	20.6	3.195	3	12.4	16.83			4.352	3					0.13 3.0	79	3		17.48			.46	3.446	3							
Floodprone Width (ft)	150		150	150			150	150	150	150	0	3	150	150	150	150	0	3	150	15	0 15	0 1	150	0	3	150	150	150) 15	50	0	3							
Bankfull Mean Depth (ft)	1.189		1.579	1.616			1.189	1.462	1.579	1.616	0.237	3	1.2	1.45	1.45	1.7	0.354	3	1.17	6 1.3	5 1.4	29 1.	444 0.	15	3	1.146	1.372	1.48	3 1.4	188	0.196	3							
¹ Bankfull Max Depth (ft)	2		2.4	2.6			2	2.333	2.4	2.6	0.306	3	2	2.367	2.5	2.6	0.321	3	2.1	2.33	33 2.3	34 2	2.56 0.	23	3	2.07	2.357	2.4	1 2.	59 (0.264	3							
Bankfull Cross Sectional Area (ft ²)	22.9						22.9		24.5	25.7		3	21.1	23.93	24.9	25.8	2.495	3			15 22.		3.68 1.0	615			23.54					3							
Width/Depth Ratio	9.181		9.837	17.32			9.181		9.837	17.32	4.522	3	7.3	12.13	11.2	17.9	5.361	3			31 10		7.11 3.9			10.38						3							
Entrenchment Ratio	7.282		9.434	10.34			7.282	9.02	9.434	10.34	1.573	3	7.1	9.333	8.8	12.1	2.542	3	_			_	0.47 1.5	_	3	6.989	8.784	9.64	6 9.7	716	1.555	3							
¹ Bank Height Ratio	1		1	1			1	1	1	1	0	3	1	1	1	1	0	3	0.92	4 1.08	33 1.1	07 1.	219 0.	149	3	0.961	1.069	1.13	2 1.1	124 (0.093	3							
Profile																																							
Riffle Length (ft)	12		33	78			12		33	78			6		29	56							9.49 18				37.55										J		
Riffle Slope (ft/ft)	0		0.004	0.024			0		0.004	0.024			7E-04		0.004	0.011	I		4E-0	4 0.00	0.0	06 0.	.016 0.0	006	9	0.003	0.007	0.00	6 0.0	013	0.004	6							
Pool Length (ft)	15		28	54			15		28	54			5		14	35			15.2	35.4	18 33.	61 56	6.09 13	.85	9	25.46	44.42	40.8	2 70	.46	13.85	7							
Pool Max depth (ft)																			3.02	5 3.50	3.5	75 4.	155 0.	34	9	2.94	3.508	3.46	5 4.	05 (0.374	7							
Pool Spacing (ft)	58		83	201			58		83	201			58		83	201			23.9	9 61.	76 61.3	37 96	6.27 26	.51	8	55.92	85.96	86.4	1 12	4.4 2	23.14	6					T		
Pattern																																							
Channel Beltwidth (ft)	34		82	104																																			
Radius of Curvature (ft)	33		54	90												Ī.,																							
Rc:Bankfull width (ft/ft)																Patte	rn data v	viii not	ypically be collected unless visual data, dimensio significant shifts from baseline						mai data or profile data indicate														
Meander Wavelength (ft)	124		156	303												<u> </u>					- 5																		
Meander Width Ratio	7.8		9.8	19.1																																			
Additional Reach Parameters																																							
Rosgen Classification	E/C4					C/E type					C/E type						_	C/E type						C/E type						<u> </u>									
Channel Thalweg length (ft)	1194					565					634						_	634						634						_									
Sinuosity (ft)	1.24						1.24						1.24						_	1.24						1.24						_							
Water Surface Slope (Channel) (ft/ft)	0.0023					0.0023						0.0028						4—	N/A									00257				₽							
BF slope (ft/ft)	<u> </u>					 												1	0.00315						0.00308						┺	_	_						
³ Ri% / Ru% / P% / G% / S%							_				lacksquare				<u> </u>	1	1		41%		58		70/ 0		201	41%	000/	57%		.	00/	00/	_	1		┷	_		
³ SC% / Sa% / G% / C% / B% / Be%														-	<u> </u>	<u> </u>	1	_					7% 0		0%	17%		54%			0%	0%	┺	1	4	+	+	-	
³ d16 / d35 / d50 / d84 / d95 /																	<u> </u>		0.20	0 1.18	9.0		6.7 12	1.2		0.1	1.2	5.5		9.9	42.9		┡			ш	ᆚ		
² % of Reach with Eroding Banks																			0%					0%						₽									
Channel Stability or Habitat Metric																			+-														₩						
Biological or Other Shaded cells indicate that these will typically not be																																							

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

3 = Riffle, Run, Pool, Gilde, Step; SilfClay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

4. = Of value/needed only if the n exceeds 3

Appendix E. Hydrologic Data

	Table 12. Verification of Bankfull Events												
Upper UT to Cane Creek (Pickard) / EEP# 395													
Date of Data Collection	Date of Occurrence	Method	Photo #										
16-Nov-09	11-Nov-09	Visual observation of wrack adjacent to the stream channel and within the floodplain as the result of Tropical Storm Ida	1-2 (MY-02 Report)										
17-Feb-10	5-Feb-10	Visual observations of overbank event including wrack lines and sediment deposition resulting from a 1.36 inch* rainfall event on February 5, 2010 that occurred after numerous rainfall events, within the 3 weeks prior, that totaled 3.52 inches	3-4 (MY-02 Report)										
16-Jun-10	17-May-10	Visual observations of overbank event including wrack lines and sediment deposition resulting from a 4.1 inch* rainfall event on May 16-17, 2010	N/A										
5-Oct-10	30-Sep-10	A 4.43 inch* rainfall event occurring between September 26-October 2, 2010	N/A										
18-Jan-13	18-Jan-13	A 2.1-inch** rainfall event within 4 hours occurred less than 24 hours after a 1.3 inch rainfall within 6 hours.	N/A										
18-Jan-13	18-Jan-13	A 1.6-inch** rainfall event within 1 hour occurred less than 15 hours after a 1.3 inch rainfall within 4 hours	N/A										

^{* -} Reported at KBUY Weather Station in Burlington ** - Reported at USGS 355637079122545 Rain gauge at Berry Andrews Rd near White Cross